cpython/Modules/_decimal/tests/deccheck.py

1398 lines
48 KiB
Python

#
# Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
#
# Usage: python deccheck.py [--short|--medium|--long|--all]
#
import random
import time
RANDSEED = int(time.time())
random.seed(RANDSEED)
import sys
import os
from copy import copy
from collections import defaultdict
import argparse
import subprocess
from subprocess import PIPE, STDOUT
from queue import Queue, Empty
from threading import Thread, Event, Lock
from randdec import randfloat, all_unary, all_binary, all_ternary
from randdec import unary_optarg, binary_optarg, ternary_optarg
from formathelper import rand_format, rand_locale
from _pydecimal import _dec_from_triple
from _testcapi import decimal_as_triple
from _testcapi import decimal_from_triple
import _decimal as C
import _pydecimal as P
EXIT_STATUS = 0
# Contains all categories of Decimal methods.
Functions = {
# Plain unary:
'unary': (
'__abs__', '__bool__', '__ceil__', '__complex__', '__copy__',
'__floor__', '__float__', '__hash__', '__int__', '__neg__',
'__pos__', '__reduce__', '__repr__', '__str__', '__trunc__',
'adjusted', 'as_integer_ratio', 'as_tuple', 'canonical', 'conjugate',
'copy_abs', 'copy_negate', 'is_canonical', 'is_finite', 'is_infinite',
'is_nan', 'is_qnan', 'is_signed', 'is_snan', 'is_zero', 'radix'
),
# Unary with optional context:
'unary_ctx': (
'exp', 'is_normal', 'is_subnormal', 'ln', 'log10', 'logb',
'logical_invert', 'next_minus', 'next_plus', 'normalize',
'number_class', 'sqrt', 'to_eng_string'
),
# Unary with optional rounding mode and context:
'unary_rnd_ctx': ('to_integral', 'to_integral_exact', 'to_integral_value'),
# Plain binary:
'binary': (
'__add__', '__divmod__', '__eq__', '__floordiv__', '__ge__', '__gt__',
'__le__', '__lt__', '__mod__', '__mul__', '__ne__', '__pow__',
'__radd__', '__rdivmod__', '__rfloordiv__', '__rmod__', '__rmul__',
'__rpow__', '__rsub__', '__rtruediv__', '__sub__', '__truediv__',
'compare_total', 'compare_total_mag', 'copy_sign', 'quantize',
'same_quantum'
),
# Binary with optional context:
'binary_ctx': (
'compare', 'compare_signal', 'logical_and', 'logical_or', 'logical_xor',
'max', 'max_mag', 'min', 'min_mag', 'next_toward', 'remainder_near',
'rotate', 'scaleb', 'shift'
),
# Plain ternary:
'ternary': ('__pow__',),
# Ternary with optional context:
'ternary_ctx': ('fma',),
# Special:
'special': ('__format__', '__reduce_ex__', '__round__', 'from_float',
'quantize'),
# Properties:
'property': ('real', 'imag')
}
# Contains all categories of Context methods. The n-ary classification
# applies to the number of Decimal arguments.
ContextFunctions = {
# Plain nullary:
'nullary': ('context.__hash__', 'context.__reduce__', 'context.radix'),
# Plain unary:
'unary': ('context.abs', 'context.canonical', 'context.copy_abs',
'context.copy_decimal', 'context.copy_negate',
'context.create_decimal', 'context.exp', 'context.is_canonical',
'context.is_finite', 'context.is_infinite', 'context.is_nan',
'context.is_normal', 'context.is_qnan', 'context.is_signed',
'context.is_snan', 'context.is_subnormal', 'context.is_zero',
'context.ln', 'context.log10', 'context.logb',
'context.logical_invert', 'context.minus', 'context.next_minus',
'context.next_plus', 'context.normalize', 'context.number_class',
'context.plus', 'context.sqrt', 'context.to_eng_string',
'context.to_integral', 'context.to_integral_exact',
'context.to_integral_value', 'context.to_sci_string'
),
# Plain binary:
'binary': ('context.add', 'context.compare', 'context.compare_signal',
'context.compare_total', 'context.compare_total_mag',
'context.copy_sign', 'context.divide', 'context.divide_int',
'context.divmod', 'context.logical_and', 'context.logical_or',
'context.logical_xor', 'context.max', 'context.max_mag',
'context.min', 'context.min_mag', 'context.multiply',
'context.next_toward', 'context.power', 'context.quantize',
'context.remainder', 'context.remainder_near', 'context.rotate',
'context.same_quantum', 'context.scaleb', 'context.shift',
'context.subtract'
),
# Plain ternary:
'ternary': ('context.fma', 'context.power'),
# Special:
'special': ('context.__reduce_ex__', 'context.create_decimal_from_float')
}
# Functions that set no context flags but whose result can differ depending
# on prec, Emin and Emax.
MaxContextSkip = ['is_normal', 'is_subnormal', 'logical_invert', 'next_minus',
'next_plus', 'number_class', 'logical_and', 'logical_or',
'logical_xor', 'next_toward', 'rotate', 'shift']
# Functions that require a restricted exponent range for reasonable runtimes.
UnaryRestricted = [
'__ceil__', '__floor__', '__int__', '__trunc__',
'as_integer_ratio', 'to_integral', 'to_integral_value'
]
BinaryRestricted = ['__round__']
TernaryRestricted = ['__pow__', 'context.power']
# ======================================================================
# Triple tests
# ======================================================================
def c_as_triple(dec):
sign, hi, lo, exp = decimal_as_triple(dec)
coeff = hi * 2**64 + lo
return (sign, coeff, exp)
def c_from_triple(triple):
sign, coeff, exp = triple
hi = coeff // 2**64
lo = coeff % 2**64
return decimal_from_triple((sign, hi, lo, exp))
def p_as_triple(dec):
sign, digits, exp = dec.as_tuple()
s = "".join(str(d) for d in digits)
coeff = int(s) if s else 0
if coeff < 0 or coeff >= 2**128:
raise ValueError("value out of bounds for a uint128 triple")
return (sign, coeff, exp)
def p_from_triple(triple):
sign, coeff, exp = triple
if coeff < 0 or coeff >= 2**128:
raise ValueError("value out of bounds for a uint128 triple")
digits = tuple(int(c) for c in str(coeff))
return P.Decimal((sign, digits, exp))
# ======================================================================
# Unified Context
# ======================================================================
# Translate symbols.
CondMap = {
C.Clamped: P.Clamped,
C.ConversionSyntax: P.ConversionSyntax,
C.DivisionByZero: P.DivisionByZero,
C.DivisionImpossible: P.InvalidOperation,
C.DivisionUndefined: P.DivisionUndefined,
C.Inexact: P.Inexact,
C.InvalidContext: P.InvalidContext,
C.InvalidOperation: P.InvalidOperation,
C.Overflow: P.Overflow,
C.Rounded: P.Rounded,
C.Subnormal: P.Subnormal,
C.Underflow: P.Underflow,
C.FloatOperation: P.FloatOperation,
}
RoundModes = [C.ROUND_UP, C.ROUND_DOWN, C.ROUND_CEILING, C.ROUND_FLOOR,
C.ROUND_HALF_UP, C.ROUND_HALF_DOWN, C.ROUND_HALF_EVEN,
C.ROUND_05UP]
class Context(object):
"""Provides a convenient way of syncing the C and P contexts"""
__slots__ = ['c', 'p']
def __init__(self, c_ctx=None, p_ctx=None):
"""Initialization is from the C context"""
self.c = C.getcontext() if c_ctx is None else c_ctx
self.p = P.getcontext() if p_ctx is None else p_ctx
self.p.prec = self.c.prec
self.p.Emin = self.c.Emin
self.p.Emax = self.c.Emax
self.p.rounding = self.c.rounding
self.p.capitals = self.c.capitals
self.settraps([sig for sig in self.c.traps if self.c.traps[sig]])
self.setstatus([sig for sig in self.c.flags if self.c.flags[sig]])
self.p.clamp = self.c.clamp
def __str__(self):
return str(self.c) + '\n' + str(self.p)
def getprec(self):
assert(self.c.prec == self.p.prec)
return self.c.prec
def setprec(self, val):
self.c.prec = val
self.p.prec = val
def getemin(self):
assert(self.c.Emin == self.p.Emin)
return self.c.Emin
def setemin(self, val):
self.c.Emin = val
self.p.Emin = val
def getemax(self):
assert(self.c.Emax == self.p.Emax)
return self.c.Emax
def setemax(self, val):
self.c.Emax = val
self.p.Emax = val
def getround(self):
assert(self.c.rounding == self.p.rounding)
return self.c.rounding
def setround(self, val):
self.c.rounding = val
self.p.rounding = val
def getcapitals(self):
assert(self.c.capitals == self.p.capitals)
return self.c.capitals
def setcapitals(self, val):
self.c.capitals = val
self.p.capitals = val
def getclamp(self):
assert(self.c.clamp == self.p.clamp)
return self.c.clamp
def setclamp(self, val):
self.c.clamp = val
self.p.clamp = val
prec = property(getprec, setprec)
Emin = property(getemin, setemin)
Emax = property(getemax, setemax)
rounding = property(getround, setround)
clamp = property(getclamp, setclamp)
capitals = property(getcapitals, setcapitals)
def clear_traps(self):
self.c.clear_traps()
for trap in self.p.traps:
self.p.traps[trap] = False
def clear_status(self):
self.c.clear_flags()
self.p.clear_flags()
def settraps(self, lst):
"""lst: C signal list"""
self.clear_traps()
for signal in lst:
self.c.traps[signal] = True
self.p.traps[CondMap[signal]] = True
def setstatus(self, lst):
"""lst: C signal list"""
self.clear_status()
for signal in lst:
self.c.flags[signal] = True
self.p.flags[CondMap[signal]] = True
def assert_eq_status(self):
"""assert equality of C and P status"""
for signal in self.c.flags:
if self.c.flags[signal] == (not self.p.flags[CondMap[signal]]):
return False
return True
# We don't want exceptions so that we can compare the status flags.
context = Context()
context.Emin = C.MIN_EMIN
context.Emax = C.MAX_EMAX
context.clear_traps()
# When creating decimals, _decimal is ultimately limited by the maximum
# context values. We emulate this restriction for decimal.py.
maxcontext = P.Context(
prec=C.MAX_PREC,
Emin=C.MIN_EMIN,
Emax=C.MAX_EMAX,
rounding=P.ROUND_HALF_UP,
capitals=1
)
maxcontext.clamp = 0
def RestrictedDecimal(value):
maxcontext.traps = copy(context.p.traps)
maxcontext.clear_flags()
if isinstance(value, str):
value = value.strip()
dec = maxcontext.create_decimal(value)
if maxcontext.flags[P.Inexact] or \
maxcontext.flags[P.Rounded] or \
maxcontext.flags[P.Clamped] or \
maxcontext.flags[P.InvalidOperation]:
return context.p._raise_error(P.InvalidOperation)
if maxcontext.flags[P.FloatOperation]:
context.p.flags[P.FloatOperation] = True
return dec
# ======================================================================
# TestSet: Organize data and events during a single test case
# ======================================================================
class RestrictedList(list):
"""List that can only be modified by appending items."""
def __getattribute__(self, name):
if name != 'append':
raise AttributeError("unsupported operation")
return list.__getattribute__(self, name)
def unsupported(self, *_):
raise AttributeError("unsupported operation")
__add__ = __delattr__ = __delitem__ = __iadd__ = __imul__ = unsupported
__mul__ = __reversed__ = __rmul__ = __setattr__ = __setitem__ = unsupported
class TestSet(object):
"""A TestSet contains the original input operands, converted operands,
Python exceptions that occurred either during conversion or during
execution of the actual function, and the final results.
For safety, most attributes are lists that only support the append
operation.
If a function name is prefixed with 'context.', the corresponding
context method is called.
"""
def __init__(self, funcname, operands):
if funcname.startswith("context."):
self.funcname = funcname.replace("context.", "")
self.contextfunc = True
else:
self.funcname = funcname
self.contextfunc = False
self.op = operands # raw operand tuple
self.context = context # context used for the operation
self.cop = RestrictedList() # converted C.Decimal operands
self.cex = RestrictedList() # Python exceptions for C.Decimal
self.cresults = RestrictedList() # C.Decimal results
self.pop = RestrictedList() # converted P.Decimal operands
self.pex = RestrictedList() # Python exceptions for P.Decimal
self.presults = RestrictedList() # P.Decimal results
# If the above results are exact, unrounded and not clamped, repeat
# the operation with a maxcontext to ensure that huge intermediate
# values do not cause a MemoryError.
self.with_maxcontext = False
self.maxcontext = context.c.copy()
self.maxcontext.prec = C.MAX_PREC
self.maxcontext.Emax = C.MAX_EMAX
self.maxcontext.Emin = C.MIN_EMIN
self.maxcontext.clear_flags()
self.maxop = RestrictedList() # converted C.Decimal operands
self.maxex = RestrictedList() # Python exceptions for C.Decimal
self.maxresults = RestrictedList() # C.Decimal results
# ======================================================================
# SkipHandler: skip known discrepancies
# ======================================================================
class SkipHandler:
"""Handle known discrepancies between decimal.py and _decimal.so.
These are either ULP differences in the power function or
extremely minor issues."""
def __init__(self):
self.ulpdiff = 0
self.powmod_zeros = 0
self.maxctx = P.Context(Emax=10**18, Emin=-10**18)
def default(self, t):
return False
__ge__ = __gt__ = __le__ = __lt__ = __ne__ = __eq__ = default
__reduce__ = __format__ = __repr__ = __str__ = default
def harrison_ulp(self, dec):
"""ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5504.pdf"""
a = dec.next_plus()
b = dec.next_minus()
return abs(a - b)
def standard_ulp(self, dec, prec):
return _dec_from_triple(0, '1', dec._exp+len(dec._int)-prec)
def rounding_direction(self, x, mode):
"""Determine the effective direction of the rounding when
the exact result x is rounded according to mode.
Return -1 for downwards, 0 for undirected, 1 for upwards,
2 for ROUND_05UP."""
cmp = 1 if x.compare_total(P.Decimal("+0")) >= 0 else -1
if mode in (P.ROUND_HALF_EVEN, P.ROUND_HALF_UP, P.ROUND_HALF_DOWN):
return 0
elif mode == P.ROUND_CEILING:
return 1
elif mode == P.ROUND_FLOOR:
return -1
elif mode == P.ROUND_UP:
return cmp
elif mode == P.ROUND_DOWN:
return -cmp
elif mode == P.ROUND_05UP:
return 2
else:
raise ValueError("Unexpected rounding mode: %s" % mode)
def check_ulpdiff(self, exact, rounded):
# current precision
p = context.p.prec
# Convert infinities to the largest representable number + 1.
x = exact
if exact.is_infinite():
x = _dec_from_triple(exact._sign, '10', context.p.Emax)
y = rounded
if rounded.is_infinite():
y = _dec_from_triple(rounded._sign, '10', context.p.Emax)
# err = (rounded - exact) / ulp(rounded)
self.maxctx.prec = p * 2
t = self.maxctx.subtract(y, x)
if context.c.flags[C.Clamped] or \
context.c.flags[C.Underflow]:
# The standard ulp does not work in Underflow territory.
ulp = self.harrison_ulp(y)
else:
ulp = self.standard_ulp(y, p)
# Error in ulps.
err = self.maxctx.divide(t, ulp)
dir = self.rounding_direction(x, context.p.rounding)
if dir == 0:
if P.Decimal("-0.6") < err < P.Decimal("0.6"):
return True
elif dir == 1: # directed, upwards
if P.Decimal("-0.1") < err < P.Decimal("1.1"):
return True
elif dir == -1: # directed, downwards
if P.Decimal("-1.1") < err < P.Decimal("0.1"):
return True
else: # ROUND_05UP
if P.Decimal("-1.1") < err < P.Decimal("1.1"):
return True
print("ulp: %s error: %s exact: %s c_rounded: %s"
% (ulp, err, exact, rounded))
return False
def bin_resolve_ulp(self, t):
"""Check if results of _decimal's power function are within the
allowed ulp ranges."""
# NaNs are beyond repair.
if t.rc.is_nan() or t.rp.is_nan():
return False
# "exact" result, double precision, half_even
self.maxctx.prec = context.p.prec * 2
op1, op2 = t.pop[0], t.pop[1]
if t.contextfunc:
exact = getattr(self.maxctx, t.funcname)(op1, op2)
else:
exact = getattr(op1, t.funcname)(op2, context=self.maxctx)
# _decimal's rounded result
rounded = P.Decimal(t.cresults[0])
self.ulpdiff += 1
return self.check_ulpdiff(exact, rounded)
############################ Correct rounding #############################
def resolve_underflow(self, t):
"""In extremely rare cases where the infinite precision result is just
below etiny, cdecimal does not set Subnormal/Underflow. Example:
setcontext(Context(prec=21, rounding=ROUND_UP, Emin=-55, Emax=85))
Decimal("1.00000000000000000000000000000000000000000000000"
"0000000100000000000000000000000000000000000000000"
"0000000000000025").ln()
"""
if t.cresults != t.presults:
return False # Results must be identical.
if context.c.flags[C.Rounded] and \
context.c.flags[C.Inexact] and \
context.p.flags[P.Rounded] and \
context.p.flags[P.Inexact]:
return True # Subnormal/Underflow may be missing.
return False
def exp(self, t):
"""Resolve Underflow or ULP difference."""
return self.resolve_underflow(t)
def log10(self, t):
"""Resolve Underflow or ULP difference."""
return self.resolve_underflow(t)
def ln(self, t):
"""Resolve Underflow or ULP difference."""
return self.resolve_underflow(t)
def __pow__(self, t):
"""Always calls the resolve function. C.Decimal does not have correct
rounding for the power function."""
if context.c.flags[C.Rounded] and \
context.c.flags[C.Inexact] and \
context.p.flags[P.Rounded] and \
context.p.flags[P.Inexact]:
return self.bin_resolve_ulp(t)
else:
return False
power = __rpow__ = __pow__
############################## Technicalities #############################
def __float__(self, t):
"""NaN comparison in the verify() function obviously gives an
incorrect answer: nan == nan -> False"""
if t.cop[0].is_nan() and t.pop[0].is_nan():
return True
return False
__complex__ = __float__
def __radd__(self, t):
"""decimal.py gives precedence to the first NaN; this is
not important, as __radd__ will not be called for
two decimal arguments."""
if t.rc.is_nan() and t.rp.is_nan():
return True
return False
__rmul__ = __radd__
################################ Various ##################################
def __round__(self, t):
"""Exception: Decimal('1').__round__(-100000000000000000000000000)
Should it really be InvalidOperation?"""
if t.rc is None and t.rp.is_nan():
return True
return False
shandler = SkipHandler()
def skip_error(t):
return getattr(shandler, t.funcname, shandler.default)(t)
# ======================================================================
# Handling verification errors
# ======================================================================
class VerifyError(Exception):
"""Verification failed."""
pass
def function_as_string(t):
if t.contextfunc:
cargs = t.cop
pargs = t.pop
maxargs = t.maxop
cfunc = "c_func: %s(" % t.funcname
pfunc = "p_func: %s(" % t.funcname
maxfunc = "max_func: %s(" % t.funcname
else:
cself, cargs = t.cop[0], t.cop[1:]
pself, pargs = t.pop[0], t.pop[1:]
maxself, maxargs = t.maxop[0], t.maxop[1:]
cfunc = "c_func: %s.%s(" % (repr(cself), t.funcname)
pfunc = "p_func: %s.%s(" % (repr(pself), t.funcname)
maxfunc = "max_func: %s.%s(" % (repr(maxself), t.funcname)
err = cfunc
for arg in cargs:
err += "%s, " % repr(arg)
err = err.rstrip(", ")
err += ")\n"
err += pfunc
for arg in pargs:
err += "%s, " % repr(arg)
err = err.rstrip(", ")
err += ")"
if t.with_maxcontext:
err += "\n"
err += maxfunc
for arg in maxargs:
err += "%s, " % repr(arg)
err = err.rstrip(", ")
err += ")"
return err
def raise_error(t):
global EXIT_STATUS
if skip_error(t):
return
EXIT_STATUS = 1
err = "Error in %s:\n\n" % t.funcname
err += "input operands: %s\n\n" % (t.op,)
err += function_as_string(t)
err += "\n\nc_result: %s\np_result: %s\n" % (t.cresults, t.presults)
if t.with_maxcontext:
err += "max_result: %s\n\n" % (t.maxresults)
else:
err += "\n"
err += "c_exceptions: %s\np_exceptions: %s\n" % (t.cex, t.pex)
if t.with_maxcontext:
err += "max_exceptions: %s\n\n" % t.maxex
else:
err += "\n"
err += "%s\n" % str(t.context)
if t.with_maxcontext:
err += "%s\n" % str(t.maxcontext)
else:
err += "\n"
raise VerifyError(err)
# ======================================================================
# Main testing functions
#
# The procedure is always (t is the TestSet):
#
# convert(t) -> Initialize the TestSet as necessary.
#
# Return 0 for early abortion (e.g. if a TypeError
# occurs during conversion, there is nothing to test).
#
# Return 1 for continuing with the test case.
#
# callfuncs(t) -> Call the relevant function for each implementation
# and record the results in the TestSet.
#
# verify(t) -> Verify the results. If verification fails, details
# are printed to stdout.
# ======================================================================
def all_nan(a):
if isinstance(a, C.Decimal):
return a.is_nan()
elif isinstance(a, tuple):
return all(all_nan(v) for v in a)
return False
def convert(t, convstr=True):
""" t is the testset. At this stage the testset contains a tuple of
operands t.op of various types. For decimal methods the first
operand (self) is always converted to Decimal. If 'convstr' is
true, string operands are converted as well.
Context operands are of type deccheck.Context, rounding mode
operands are given as a tuple (C.rounding, P.rounding).
Other types (float, int, etc.) are left unchanged.
"""
for i, op in enumerate(t.op):
context.clear_status()
t.maxcontext.clear_flags()
if op in RoundModes:
t.cop.append(op)
t.pop.append(op)
t.maxop.append(op)
elif not t.contextfunc and i == 0 or \
convstr and isinstance(op, str):
try:
c = C.Decimal(op)
cex = None
except (TypeError, ValueError, OverflowError) as e:
c = None
cex = e.__class__
try:
p = RestrictedDecimal(op)
pex = None
except (TypeError, ValueError, OverflowError) as e:
p = None
pex = e.__class__
try:
C.setcontext(t.maxcontext)
maxop = C.Decimal(op)
maxex = None
except (TypeError, ValueError, OverflowError) as e:
maxop = None
maxex = e.__class__
finally:
C.setcontext(context.c)
t.cop.append(c)
t.cex.append(cex)
t.pop.append(p)
t.pex.append(pex)
t.maxop.append(maxop)
t.maxex.append(maxex)
if cex is pex:
if str(c) != str(p) or not context.assert_eq_status():
raise_error(t)
if cex and pex:
# nothing to test
return 0
else:
raise_error(t)
# The exceptions in the maxcontext operation can legitimately
# differ, only test that maxex implies cex:
if maxex is not None and cex is not maxex:
raise_error(t)
elif isinstance(op, Context):
t.context = op
t.cop.append(op.c)
t.pop.append(op.p)
t.maxop.append(t.maxcontext)
else:
t.cop.append(op)
t.pop.append(op)
t.maxop.append(op)
return 1
def callfuncs(t):
""" t is the testset. At this stage the testset contains operand lists
t.cop and t.pop for the C and Python versions of decimal.
For Decimal methods, the first operands are of type C.Decimal and
P.Decimal respectively. The remaining operands can have various types.
For Context methods, all operands can have any type.
t.rc and t.rp are the results of the operation.
"""
context.clear_status()
t.maxcontext.clear_flags()
try:
if t.contextfunc:
cargs = t.cop
t.rc = getattr(context.c, t.funcname)(*cargs)
else:
cself = t.cop[0]
cargs = t.cop[1:]
t.rc = getattr(cself, t.funcname)(*cargs)
t.cex.append(None)
except (TypeError, ValueError, OverflowError, MemoryError) as e:
t.rc = None
t.cex.append(e.__class__)
try:
if t.contextfunc:
pargs = t.pop
t.rp = getattr(context.p, t.funcname)(*pargs)
else:
pself = t.pop[0]
pargs = t.pop[1:]
t.rp = getattr(pself, t.funcname)(*pargs)
t.pex.append(None)
except (TypeError, ValueError, OverflowError, MemoryError) as e:
t.rp = None
t.pex.append(e.__class__)
# If the above results are exact, unrounded, normal etc., repeat the
# operation with a maxcontext to ensure that huge intermediate values
# do not cause a MemoryError.
if (t.funcname not in MaxContextSkip and
not context.c.flags[C.InvalidOperation] and
not context.c.flags[C.Inexact] and
not context.c.flags[C.Rounded] and
not context.c.flags[C.Subnormal] and
not context.c.flags[C.Clamped] and
not context.clamp and # results are padded to context.prec if context.clamp==1.
not any(isinstance(v, C.Context) for v in t.cop)): # another context is used.
t.with_maxcontext = True
try:
if t.contextfunc:
maxargs = t.maxop
t.rmax = getattr(t.maxcontext, t.funcname)(*maxargs)
else:
maxself = t.maxop[0]
maxargs = t.maxop[1:]
try:
C.setcontext(t.maxcontext)
t.rmax = getattr(maxself, t.funcname)(*maxargs)
finally:
C.setcontext(context.c)
t.maxex.append(None)
except (TypeError, ValueError, OverflowError, MemoryError) as e:
t.rmax = None
t.maxex.append(e.__class__)
def verify(t, stat):
""" t is the testset. At this stage the testset contains the following
tuples:
t.op: original operands
t.cop: C.Decimal operands (see convert for details)
t.pop: P.Decimal operands (see convert for details)
t.rc: C result
t.rp: Python result
t.rc and t.rp can have various types.
"""
t.cresults.append(str(t.rc))
t.presults.append(str(t.rp))
if t.with_maxcontext:
t.maxresults.append(str(t.rmax))
if isinstance(t.rc, C.Decimal) and isinstance(t.rp, P.Decimal):
# General case: both results are Decimals.
t.cresults.append(t.rc.to_eng_string())
t.cresults.append(t.rc.as_tuple())
t.cresults.append(str(t.rc.imag))
t.cresults.append(str(t.rc.real))
t.presults.append(t.rp.to_eng_string())
t.presults.append(t.rp.as_tuple())
t.presults.append(str(t.rp.imag))
t.presults.append(str(t.rp.real))
ctriple = None
if str(t.rc) == str(t.rp): # see skip handler
try:
ctriple = c_as_triple(t.rc)
except ValueError:
try:
ptriple = p_as_triple(t.rp)
except ValueError:
pass
else:
raise RuntimeError("ValueError not raised")
else:
cres = c_from_triple(ctriple)
t.cresults.append(ctriple)
t.cresults.append(str(cres))
ptriple = p_as_triple(t.rp)
pres = p_from_triple(ptriple)
t.presults.append(ptriple)
t.presults.append(str(pres))
if t.with_maxcontext and isinstance(t.rmax, C.Decimal):
t.maxresults.append(t.rmax.to_eng_string())
t.maxresults.append(t.rmax.as_tuple())
t.maxresults.append(str(t.rmax.imag))
t.maxresults.append(str(t.rmax.real))
if ctriple is not None:
# NaN payloads etc. depend on precision and clamp.
if all_nan(t.rc) and all_nan(t.rmax):
t.maxresults.append(ctriple)
t.maxresults.append(str(cres))
else:
maxtriple = c_as_triple(t.rmax)
maxres = c_from_triple(maxtriple)
t.maxresults.append(maxtriple)
t.maxresults.append(str(maxres))
nc = t.rc.number_class().lstrip('+-s')
stat[nc] += 1
else:
# Results from e.g. __divmod__ can only be compared as strings.
if not isinstance(t.rc, tuple) and not isinstance(t.rp, tuple):
if t.rc != t.rp:
raise_error(t)
if t.with_maxcontext and not isinstance(t.rmax, tuple):
if t.rmax != t.rc:
raise_error(t)
stat[type(t.rc).__name__] += 1
# The return value lists must be equal.
if t.cresults != t.presults:
raise_error(t)
# The Python exception lists (TypeError, etc.) must be equal.
if t.cex != t.pex:
raise_error(t)
# The context flags must be equal.
if not t.context.assert_eq_status():
raise_error(t)
if t.with_maxcontext:
# NaN payloads etc. depend on precision and clamp.
if all_nan(t.rc) and all_nan(t.rmax):
return
# The return value lists must be equal.
if t.maxresults != t.cresults:
raise_error(t)
# The Python exception lists (TypeError, etc.) must be equal.
if t.maxex != t.cex:
raise_error(t)
# The context flags must be equal.
if t.maxcontext.flags != t.context.c.flags:
raise_error(t)
# ======================================================================
# Main test loops
#
# test_method(method, testspecs, testfunc) ->
#
# Loop through various context settings. The degree of
# thoroughness is determined by 'testspec'. For each
# setting, call 'testfunc'. Generally, 'testfunc' itself
# a loop, iterating through many test cases generated
# by the functions in randdec.py.
#
# test_n-ary(method, prec, exp_range, restricted_range, itr, stat) ->
#
# 'test_unary', 'test_binary' and 'test_ternary' are the
# main test functions passed to 'test_method'. They deal
# with the regular cases. The thoroughness of testing is
# determined by 'itr'.
#
# 'prec', 'exp_range' and 'restricted_range' are passed
# to the test-generating functions and limit the generated
# values. In some cases, for reasonable run times a
# maximum exponent of 9999 is required.
#
# The 'stat' parameter is passed down to the 'verify'
# function, which records statistics for the result values.
# ======================================================================
def log(fmt, args=None):
if args:
sys.stdout.write(''.join((fmt, '\n')) % args)
else:
sys.stdout.write(''.join((str(fmt), '\n')))
sys.stdout.flush()
def test_method(method, testspecs, testfunc):
"""Iterate a test function through many context settings."""
log("testing %s ...", method)
stat = defaultdict(int)
for spec in testspecs:
if 'samples' in spec:
spec['prec'] = sorted(random.sample(range(1, 101),
spec['samples']))
for prec in spec['prec']:
context.prec = prec
for expts in spec['expts']:
emin, emax = expts
if emin == 'rand':
context.Emin = random.randrange(-1000, 0)
context.Emax = random.randrange(prec, 1000)
else:
context.Emin, context.Emax = emin, emax
if prec > context.Emax: continue
log(" prec: %d emin: %d emax: %d",
(context.prec, context.Emin, context.Emax))
restr_range = 9999 if context.Emax > 9999 else context.Emax+99
for rounding in RoundModes:
context.rounding = rounding
context.capitals = random.randrange(2)
if spec['clamp'] == 'rand':
context.clamp = random.randrange(2)
else:
context.clamp = spec['clamp']
exprange = context.c.Emax
testfunc(method, prec, exprange, restr_range,
spec['iter'], stat)
log(" result types: %s" % sorted([t for t in stat.items()]))
def test_unary(method, prec, exp_range, restricted_range, itr, stat):
"""Iterate a unary function through many test cases."""
if method in UnaryRestricted:
exp_range = restricted_range
for op in all_unary(prec, exp_range, itr):
t = TestSet(method, op)
try:
if not convert(t):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
if not method.startswith('__'):
for op in unary_optarg(prec, exp_range, itr):
t = TestSet(method, op)
try:
if not convert(t):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
def test_binary(method, prec, exp_range, restricted_range, itr, stat):
"""Iterate a binary function through many test cases."""
if method in BinaryRestricted:
exp_range = restricted_range
for op in all_binary(prec, exp_range, itr):
t = TestSet(method, op)
try:
if not convert(t):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
if not method.startswith('__'):
for op in binary_optarg(prec, exp_range, itr):
t = TestSet(method, op)
try:
if not convert(t):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
def test_ternary(method, prec, exp_range, restricted_range, itr, stat):
"""Iterate a ternary function through many test cases."""
if method in TernaryRestricted:
exp_range = restricted_range
for op in all_ternary(prec, exp_range, itr):
t = TestSet(method, op)
try:
if not convert(t):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
if not method.startswith('__'):
for op in ternary_optarg(prec, exp_range, itr):
t = TestSet(method, op)
try:
if not convert(t):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
def test_format(method, prec, exp_range, restricted_range, itr, stat):
"""Iterate the __format__ method through many test cases."""
for op in all_unary(prec, exp_range, itr):
fmt1 = rand_format(chr(random.randrange(0, 128)), 'EeGgn')
fmt2 = rand_locale()
for fmt in (fmt1, fmt2):
fmtop = (op[0], fmt)
t = TestSet(method, fmtop)
try:
if not convert(t, convstr=False):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
for op in all_unary(prec, 9999, itr):
fmt1 = rand_format(chr(random.randrange(0, 128)), 'Ff%')
fmt2 = rand_locale()
for fmt in (fmt1, fmt2):
fmtop = (op[0], fmt)
t = TestSet(method, fmtop)
try:
if not convert(t, convstr=False):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
def test_round(method, prec, exprange, restricted_range, itr, stat):
"""Iterate the __round__ method through many test cases."""
for op in all_unary(prec, 9999, itr):
n = random.randrange(10)
roundop = (op[0], n)
t = TestSet(method, roundop)
try:
if not convert(t):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
def test_from_float(method, prec, exprange, restricted_range, itr, stat):
"""Iterate the __float__ method through many test cases."""
for rounding in RoundModes:
context.rounding = rounding
for i in range(1000):
f = randfloat()
op = (f,) if method.startswith("context.") else ("sNaN", f)
t = TestSet(method, op)
try:
if not convert(t):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
def randcontext(exprange):
c = Context(C.Context(), P.Context())
c.Emax = random.randrange(1, exprange+1)
c.Emin = random.randrange(-exprange, 0)
maxprec = 100 if c.Emax >= 100 else c.Emax
c.prec = random.randrange(1, maxprec+1)
c.clamp = random.randrange(2)
c.clear_traps()
return c
def test_quantize_api(method, prec, exprange, restricted_range, itr, stat):
"""Iterate the 'quantize' method through many test cases, using
the optional arguments."""
for op in all_binary(prec, restricted_range, itr):
for rounding in RoundModes:
c = randcontext(exprange)
quantizeop = (op[0], op[1], rounding, c)
t = TestSet(method, quantizeop)
try:
if not convert(t):
continue
callfuncs(t)
verify(t, stat)
except VerifyError as err:
log(err)
def check_untested(funcdict, c_cls, p_cls):
"""Determine untested, C-only and Python-only attributes.
Uncomment print lines for debugging."""
c_attr = set(dir(c_cls))
p_attr = set(dir(p_cls))
intersect = c_attr & p_attr
funcdict['c_only'] = tuple(sorted(c_attr-intersect))
funcdict['p_only'] = tuple(sorted(p_attr-intersect))
tested = set()
for lst in funcdict.values():
for v in lst:
v = v.replace("context.", "") if c_cls == C.Context else v
tested.add(v)
funcdict['untested'] = tuple(sorted(intersect-tested))
# for key in ('untested', 'c_only', 'p_only'):
# s = 'Context' if c_cls == C.Context else 'Decimal'
# print("\n%s %s:\n%s" % (s, key, funcdict[key]))
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog="deccheck.py")
group = parser.add_mutually_exclusive_group()
group.add_argument('--short', dest='time', action="store_const", const='short', default='short', help="short test (default)")
group.add_argument('--medium', dest='time', action="store_const", const='medium', default='short', help="medium test (reasonable run time)")
group.add_argument('--long', dest='time', action="store_const", const='long', default='short', help="long test (long run time)")
group.add_argument('--all', dest='time', action="store_const", const='all', default='short', help="all tests (excessive run time)")
group = parser.add_mutually_exclusive_group()
group.add_argument('--single', dest='single', nargs=1, default=False, metavar="TEST", help="run a single test")
group.add_argument('--multicore', dest='multicore', action="store_true", default=False, help="use all available cores")
args = parser.parse_args()
assert args.single is False or args.multicore is False
if args.single:
args.single = args.single[0]
# Set up the testspecs list. A testspec is simply a dictionary
# that determines the amount of different contexts that 'test_method'
# will generate.
base_expts = [(C.MIN_EMIN, C.MAX_EMAX)]
if C.MAX_EMAX == 999999999999999999:
base_expts.append((-999999999, 999999999))
# Basic contexts.
base = {
'expts': base_expts,
'prec': [],
'clamp': 'rand',
'iter': None,
'samples': None,
}
# Contexts with small values for prec, emin, emax.
small = {
'prec': [1, 2, 3, 4, 5],
'expts': [(-1, 1), (-2, 2), (-3, 3), (-4, 4), (-5, 5)],
'clamp': 'rand',
'iter': None
}
# IEEE interchange format.
ieee = [
# DECIMAL32
{'prec': [7], 'expts': [(-95, 96)], 'clamp': 1, 'iter': None},
# DECIMAL64
{'prec': [16], 'expts': [(-383, 384)], 'clamp': 1, 'iter': None},
# DECIMAL128
{'prec': [34], 'expts': [(-6143, 6144)], 'clamp': 1, 'iter': None}
]
if args.time == 'medium':
base['expts'].append(('rand', 'rand'))
# 5 random precisions
base['samples'] = 5
testspecs = [small] + ieee + [base]
elif args.time == 'long':
base['expts'].append(('rand', 'rand'))
# 10 random precisions
base['samples'] = 10
testspecs = [small] + ieee + [base]
elif args.time == 'all':
base['expts'].append(('rand', 'rand'))
# All precisions in [1, 100]
base['samples'] = 100
testspecs = [small] + ieee + [base]
else: # --short
rand_ieee = random.choice(ieee)
base['iter'] = small['iter'] = rand_ieee['iter'] = 1
# 1 random precision and exponent pair
base['samples'] = 1
base['expts'] = [random.choice(base_expts)]
# 1 random precision and exponent pair
prec = random.randrange(1, 6)
small['prec'] = [prec]
small['expts'] = [(-prec, prec)]
testspecs = [small, rand_ieee, base]
check_untested(Functions, C.Decimal, P.Decimal)
check_untested(ContextFunctions, C.Context, P.Context)
if args.multicore:
q = Queue()
elif args.single:
log("Random seed: %d", RANDSEED)
else:
log("\n\nRandom seed: %d\n\n", RANDSEED)
FOUND_METHOD = False
def do_single(method, f):
global FOUND_METHOD
if args.multicore:
q.put(method)
elif not args.single or args.single == method:
FOUND_METHOD = True
f()
# Decimal methods:
for method in Functions['unary'] + Functions['unary_ctx'] + \
Functions['unary_rnd_ctx']:
do_single(method, lambda: test_method(method, testspecs, test_unary))
for method in Functions['binary'] + Functions['binary_ctx']:
do_single(method, lambda: test_method(method, testspecs, test_binary))
for method in Functions['ternary'] + Functions['ternary_ctx']:
name = '__powmod__' if method == '__pow__' else method
do_single(name, lambda: test_method(method, testspecs, test_ternary))
do_single('__format__', lambda: test_method('__format__', testspecs, test_format))
do_single('__round__', lambda: test_method('__round__', testspecs, test_round))
do_single('from_float', lambda: test_method('from_float', testspecs, test_from_float))
do_single('quantize_api', lambda: test_method('quantize', testspecs, test_quantize_api))
# Context methods:
for method in ContextFunctions['unary']:
do_single(method, lambda: test_method(method, testspecs, test_unary))
for method in ContextFunctions['binary']:
do_single(method, lambda: test_method(method, testspecs, test_binary))
for method in ContextFunctions['ternary']:
name = 'context.powmod' if method == 'context.power' else method
do_single(name, lambda: test_method(method, testspecs, test_ternary))
do_single('context.create_decimal_from_float',
lambda: test_method('context.create_decimal_from_float',
testspecs, test_from_float))
if args.multicore:
error = Event()
write_lock = Lock()
def write_output(out, returncode):
if returncode != 0:
error.set()
with write_lock:
sys.stdout.buffer.write(out + b"\n")
sys.stdout.buffer.flush()
def tfunc():
while not error.is_set():
try:
test = q.get(block=False, timeout=-1)
except Empty:
return
cmd = [sys.executable, "deccheck.py", "--%s" % args.time, "--single", test]
p = subprocess.Popen(cmd, stdout=PIPE, stderr=STDOUT)
out, _ = p.communicate()
write_output(out, p.returncode)
N = os.cpu_count()
t = N * [None]
for i in range(N):
t[i] = Thread(target=tfunc)
t[i].start()
for i in range(N):
t[i].join()
sys.exit(1 if error.is_set() else 0)
elif args.single:
if not FOUND_METHOD:
log("\nerror: cannot find method \"%s\"" % args.single)
EXIT_STATUS = 1
sys.exit(EXIT_STATUS)
else:
sys.exit(EXIT_STATUS)