cpython/Lib/decimal.py

5178 lines
179 KiB
Python

# Copyright (c) 2004 Python Software Foundation.
# All rights reserved.
# Written by Eric Price <eprice at tjhsst.edu>
# and Facundo Batista <facundo at taniquetil.com.ar>
# and Raymond Hettinger <python at rcn.com>
# and Aahz <aahz at pobox.com>
# and Tim Peters
# This module is currently Py2.3 compatible and should be kept that way
# unless a major compelling advantage arises. IOW, 2.3 compatibility is
# strongly preferred, but not guaranteed.
# Also, this module should be kept in sync with the latest updates of
# the IBM specification as it evolves. Those updates will be treated
# as bug fixes (deviation from the spec is a compatibility, usability
# bug) and will be backported. At this point the spec is stabilizing
# and the updates are becoming fewer, smaller, and less significant.
"""
This is a Py2.3 implementation of decimal floating point arithmetic based on
the General Decimal Arithmetic Specification:
www2.hursley.ibm.com/decimal/decarith.html
and IEEE standard 854-1987:
www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
Decimal floating point has finite precision with arbitrarily large bounds.
The purpose of this module is to support arithmetic using familiar
"schoolhouse" rules and to avoid some of the tricky representation
issues associated with binary floating point. The package is especially
useful for financial applications or for contexts where users have
expectations that are at odds with binary floating point (for instance,
in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
of the expected Decimal("0.00") returned by decimal floating point).
Here are some examples of using the decimal module:
>>> from decimal import *
>>> setcontext(ExtendedContext)
>>> Decimal(0)
Decimal("0")
>>> Decimal("1")
Decimal("1")
>>> Decimal("-.0123")
Decimal("-0.0123")
>>> Decimal(123456)
Decimal("123456")
>>> Decimal("123.45e12345678901234567890")
Decimal("1.2345E+12345678901234567892")
>>> Decimal("1.33") + Decimal("1.27")
Decimal("2.60")
>>> Decimal("12.34") + Decimal("3.87") - Decimal("18.41")
Decimal("-2.20")
>>> dig = Decimal(1)
>>> print dig / Decimal(3)
0.333333333
>>> getcontext().prec = 18
>>> print dig / Decimal(3)
0.333333333333333333
>>> print dig.sqrt()
1
>>> print Decimal(3).sqrt()
1.73205080756887729
>>> print Decimal(3) ** 123
4.85192780976896427E+58
>>> inf = Decimal(1) / Decimal(0)
>>> print inf
Infinity
>>> neginf = Decimal(-1) / Decimal(0)
>>> print neginf
-Infinity
>>> print neginf + inf
NaN
>>> print neginf * inf
-Infinity
>>> print dig / 0
Infinity
>>> getcontext().traps[DivisionByZero] = 1
>>> print dig / 0
Traceback (most recent call last):
...
...
...
DivisionByZero: x / 0
>>> c = Context()
>>> c.traps[InvalidOperation] = 0
>>> print c.flags[InvalidOperation]
0
>>> c.divide(Decimal(0), Decimal(0))
Decimal("NaN")
>>> c.traps[InvalidOperation] = 1
>>> print c.flags[InvalidOperation]
1
>>> c.flags[InvalidOperation] = 0
>>> print c.flags[InvalidOperation]
0
>>> print c.divide(Decimal(0), Decimal(0))
Traceback (most recent call last):
...
...
...
InvalidOperation: 0 / 0
>>> print c.flags[InvalidOperation]
1
>>> c.flags[InvalidOperation] = 0
>>> c.traps[InvalidOperation] = 0
>>> print c.divide(Decimal(0), Decimal(0))
NaN
>>> print c.flags[InvalidOperation]
1
>>>
"""
__all__ = [
# Two major classes
'Decimal', 'Context',
# Contexts
'DefaultContext', 'BasicContext', 'ExtendedContext',
# Exceptions
'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
# Constants for use in setting up contexts
'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
# Functions for manipulating contexts
'setcontext', 'getcontext', 'localcontext'
]
import copy as _copy
# Rounding
ROUND_DOWN = 'ROUND_DOWN'
ROUND_HALF_UP = 'ROUND_HALF_UP'
ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
ROUND_CEILING = 'ROUND_CEILING'
ROUND_FLOOR = 'ROUND_FLOOR'
ROUND_UP = 'ROUND_UP'
ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
ROUND_05UP = 'ROUND_05UP'
# Errors
class DecimalException(ArithmeticError):
"""Base exception class.
Used exceptions derive from this.
If an exception derives from another exception besides this (such as
Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
called if the others are present. This isn't actually used for
anything, though.
handle -- Called when context._raise_error is called and the
trap_enabler is set. First argument is self, second is the
context. More arguments can be given, those being after
the explanation in _raise_error (For example,
context._raise_error(NewError, '(-x)!', self._sign) would
call NewError().handle(context, self._sign).)
To define a new exception, it should be sufficient to have it derive
from DecimalException.
"""
def handle(self, context, *args):
pass
class Clamped(DecimalException):
"""Exponent of a 0 changed to fit bounds.
This occurs and signals clamped if the exponent of a result has been
altered in order to fit the constraints of a specific concrete
representation. This may occur when the exponent of a zero result would
be outside the bounds of a representation, or when a large normal
number would have an encoded exponent that cannot be represented. In
this latter case, the exponent is reduced to fit and the corresponding
number of zero digits are appended to the coefficient ("fold-down").
"""
class InvalidOperation(DecimalException):
"""An invalid operation was performed.
Various bad things cause this:
Something creates a signaling NaN
-INF + INF
0 * (+-)INF
(+-)INF / (+-)INF
x % 0
(+-)INF % x
x._rescale( non-integer )
sqrt(-x) , x > 0
0 ** 0
x ** (non-integer)
x ** (+-)INF
An operand is invalid
The result of the operation after these is a quiet positive NaN,
except when the cause is a signaling NaN, in which case the result is
also a quiet NaN, but with the original sign, and an optional
diagnostic information.
"""
def handle(self, context, *args):
if args:
if args[0] == 1: # sNaN, must drop 's' but keep diagnostics
ans = _dec_from_triple(args[1]._sign, args[1]._int, 'n', True)
return ans._fix_nan(context)
elif args[0] == 2:
return _dec_from_triple(args[1], args[2], 'n', True)
return NaN
class ConversionSyntax(InvalidOperation):
"""Trying to convert badly formed string.
This occurs and signals invalid-operation if an string is being
converted to a number and it does not conform to the numeric string
syntax. The result is [0,qNaN].
"""
def handle(self, context, *args):
return NaN
class DivisionByZero(DecimalException, ZeroDivisionError):
"""Division by 0.
This occurs and signals division-by-zero if division of a finite number
by zero was attempted (during a divide-integer or divide operation, or a
power operation with negative right-hand operand), and the dividend was
not zero.
The result of the operation is [sign,inf], where sign is the exclusive
or of the signs of the operands for divide, or is 1 for an odd power of
-0, for power.
"""
def handle(self, context, sign, *args):
return Infsign[sign]
class DivisionImpossible(InvalidOperation):
"""Cannot perform the division adequately.
This occurs and signals invalid-operation if the integer result of a
divide-integer or remainder operation had too many digits (would be
longer than precision). The result is [0,qNaN].
"""
def handle(self, context, *args):
return NaN
class DivisionUndefined(InvalidOperation, ZeroDivisionError):
"""Undefined result of division.
This occurs and signals invalid-operation if division by zero was
attempted (during a divide-integer, divide, or remainder operation), and
the dividend is also zero. The result is [0,qNaN].
"""
def handle(self, context, *args):
return NaN
class Inexact(DecimalException):
"""Had to round, losing information.
This occurs and signals inexact whenever the result of an operation is
not exact (that is, it needed to be rounded and any discarded digits
were non-zero), or if an overflow or underflow condition occurs. The
result in all cases is unchanged.
The inexact signal may be tested (or trapped) to determine if a given
operation (or sequence of operations) was inexact.
"""
pass
class InvalidContext(InvalidOperation):
"""Invalid context. Unknown rounding, for example.
This occurs and signals invalid-operation if an invalid context was
detected during an operation. This can occur if contexts are not checked
on creation and either the precision exceeds the capability of the
underlying concrete representation or an unknown or unsupported rounding
was specified. These aspects of the context need only be checked when
the values are required to be used. The result is [0,qNaN].
"""
def handle(self, context, *args):
return NaN
class Rounded(DecimalException):
"""Number got rounded (not necessarily changed during rounding).
This occurs and signals rounded whenever the result of an operation is
rounded (that is, some zero or non-zero digits were discarded from the
coefficient), or if an overflow or underflow condition occurs. The
result in all cases is unchanged.
The rounded signal may be tested (or trapped) to determine if a given
operation (or sequence of operations) caused a loss of precision.
"""
pass
class Subnormal(DecimalException):
"""Exponent < Emin before rounding.
This occurs and signals subnormal whenever the result of a conversion or
operation is subnormal (that is, its adjusted exponent is less than
Emin, before any rounding). The result in all cases is unchanged.
The subnormal signal may be tested (or trapped) to determine if a given
or operation (or sequence of operations) yielded a subnormal result.
"""
pass
class Overflow(Inexact, Rounded):
"""Numerical overflow.
This occurs and signals overflow if the adjusted exponent of a result
(from a conversion or from an operation that is not an attempt to divide
by zero), after rounding, would be greater than the largest value that
can be handled by the implementation (the value Emax).
The result depends on the rounding mode:
For round-half-up and round-half-even (and for round-half-down and
round-up, if implemented), the result of the operation is [sign,inf],
where sign is the sign of the intermediate result. For round-down, the
result is the largest finite number that can be represented in the
current precision, with the sign of the intermediate result. For
round-ceiling, the result is the same as for round-down if the sign of
the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
the result is the same as for round-down if the sign of the intermediate
result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
will also be raised.
"""
def handle(self, context, sign, *args):
if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
ROUND_HALF_DOWN, ROUND_UP):
return Infsign[sign]
if sign == 0:
if context.rounding == ROUND_CEILING:
return Infsign[sign]
return _dec_from_triple(sign, '9'*context.prec,
context.Emax-context.prec+1)
if sign == 1:
if context.rounding == ROUND_FLOOR:
return Infsign[sign]
return _dec_from_triple(sign, '9'*context.prec,
context.Emax-context.prec+1)
class Underflow(Inexact, Rounded, Subnormal):
"""Numerical underflow with result rounded to 0.
This occurs and signals underflow if a result is inexact and the
adjusted exponent of the result would be smaller (more negative) than
the smallest value that can be handled by the implementation (the value
Emin). That is, the result is both inexact and subnormal.
The result after an underflow will be a subnormal number rounded, if
necessary, so that its exponent is not less than Etiny. This may result
in 0 with the sign of the intermediate result and an exponent of Etiny.
In all cases, Inexact, Rounded, and Subnormal will also be raised.
"""
# List of public traps and flags
_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
Underflow, InvalidOperation, Subnormal]
# Map conditions (per the spec) to signals
_condition_map = {ConversionSyntax:InvalidOperation,
DivisionImpossible:InvalidOperation,
DivisionUndefined:InvalidOperation,
InvalidContext:InvalidOperation}
##### Context Functions ##################################################
# The getcontext() and setcontext() function manage access to a thread-local
# current context. Py2.4 offers direct support for thread locals. If that
# is not available, use threading.currentThread() which is slower but will
# work for older Pythons. If threads are not part of the build, create a
# mock threading object with threading.local() returning the module namespace.
try:
import threading
except ImportError:
# Python was compiled without threads; create a mock object instead
import sys
class MockThreading(object):
def local(self, sys=sys):
return sys.modules[__name__]
threading = MockThreading()
del sys, MockThreading
try:
threading.local
except AttributeError:
# To fix reloading, force it to create a new context
# Old contexts have different exceptions in their dicts, making problems.
if hasattr(threading.currentThread(), '__decimal_context__'):
del threading.currentThread().__decimal_context__
def setcontext(context):
"""Set this thread's context to context."""
if context in (DefaultContext, BasicContext, ExtendedContext):
context = context.copy()
context.clear_flags()
threading.currentThread().__decimal_context__ = context
def getcontext():
"""Returns this thread's context.
If this thread does not yet have a context, returns
a new context and sets this thread's context.
New contexts are copies of DefaultContext.
"""
try:
return threading.currentThread().__decimal_context__
except AttributeError:
context = Context()
threading.currentThread().__decimal_context__ = context
return context
else:
local = threading.local()
if hasattr(local, '__decimal_context__'):
del local.__decimal_context__
def getcontext(_local=local):
"""Returns this thread's context.
If this thread does not yet have a context, returns
a new context and sets this thread's context.
New contexts are copies of DefaultContext.
"""
try:
return _local.__decimal_context__
except AttributeError:
context = Context()
_local.__decimal_context__ = context
return context
def setcontext(context, _local=local):
"""Set this thread's context to context."""
if context in (DefaultContext, BasicContext, ExtendedContext):
context = context.copy()
context.clear_flags()
_local.__decimal_context__ = context
del threading, local # Don't contaminate the namespace
def localcontext(ctx=None):
"""Return a context manager for a copy of the supplied context
Uses a copy of the current context if no context is specified
The returned context manager creates a local decimal context
in a with statement:
def sin(x):
with localcontext() as ctx:
ctx.prec += 2
# Rest of sin calculation algorithm
# uses a precision 2 greater than normal
return +s # Convert result to normal precision
def sin(x):
with localcontext(ExtendedContext):
# Rest of sin calculation algorithm
# uses the Extended Context from the
# General Decimal Arithmetic Specification
return +s # Convert result to normal context
"""
# The string below can't be included in the docstring until Python 2.6
# as the doctest module doesn't understand __future__ statements
"""
>>> from __future__ import with_statement
>>> print getcontext().prec
28
>>> with localcontext():
... ctx = getcontext()
... ctx.prec += 2
... print ctx.prec
...
30
>>> with localcontext(ExtendedContext):
... print getcontext().prec
...
9
>>> print getcontext().prec
28
"""
if ctx is None: ctx = getcontext()
return _ContextManager(ctx)
##### Decimal class #######################################################
class Decimal(object):
"""Floating point class for decimal arithmetic."""
__slots__ = ('_exp','_int','_sign', '_is_special')
# Generally, the value of the Decimal instance is given by
# (-1)**_sign * _int * 10**_exp
# Special values are signified by _is_special == True
# We're immutable, so use __new__ not __init__
def __new__(cls, value="0", context=None):
"""Create a decimal point instance.
>>> Decimal('3.14') # string input
Decimal("3.14")
>>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
Decimal("3.14")
>>> Decimal(314) # int or long
Decimal("314")
>>> Decimal(Decimal(314)) # another decimal instance
Decimal("314")
"""
# Note that the coefficient, self._int, is actually stored as
# a string rather than as a tuple of digits. This speeds up
# the "digits to integer" and "integer to digits" conversions
# that are used in almost every arithmetic operation on
# Decimals. This is an internal detail: the as_tuple function
# and the Decimal constructor still deal with tuples of
# digits.
self = object.__new__(cls)
# From a string
# REs insist on real strings, so we can too.
if isinstance(value, basestring):
m = _parser(value)
if m is None:
if context is None:
context = getcontext()
return context._raise_error(ConversionSyntax,
"Invalid literal for Decimal: %r" % value)
if m.group('sign') == "-":
self._sign = 1
else:
self._sign = 0
intpart = m.group('int')
if intpart is not None:
# finite number
fracpart = m.group('frac')
exp = int(m.group('exp') or '0')
if fracpart is not None:
self._int = (intpart+fracpart).lstrip('0') or '0'
self._exp = exp - len(fracpart)
else:
self._int = intpart.lstrip('0') or '0'
self._exp = exp
self._is_special = False
else:
diag = m.group('diag')
if diag is not None:
# NaN
self._int = diag.lstrip('0')
if m.group('signal'):
self._exp = 'N'
else:
self._exp = 'n'
else:
# infinity
self._int = '0'
self._exp = 'F'
self._is_special = True
return self
# From an integer
if isinstance(value, (int,long)):
if value >= 0:
self._sign = 0
else:
self._sign = 1
self._exp = 0
self._int = str(abs(value))
self._is_special = False
return self
# From another decimal
if isinstance(value, Decimal):
self._exp = value._exp
self._sign = value._sign
self._int = value._int
self._is_special = value._is_special
return self
# From an internal working value
if isinstance(value, _WorkRep):
self._sign = value.sign
self._int = str(value.int)
self._exp = int(value.exp)
self._is_special = False
return self
# tuple/list conversion (possibly from as_tuple())
if isinstance(value, (list,tuple)):
if len(value) != 3:
raise ValueError('Invalid tuple size in creation of Decimal '
'from list or tuple. The list or tuple '
'should have exactly three elements.')
# process sign. The isinstance test rejects floats
if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
raise ValueError("Invalid sign. The first value in the tuple "
"should be an integer; either 0 for a "
"positive number or 1 for a negative number.")
self._sign = value[0]
if value[2] == 'F':
# infinity: value[1] is ignored
self._int = '0'
self._exp = value[2]
self._is_special = True
else:
# process and validate the digits in value[1]
digits = []
for digit in value[1]:
if isinstance(digit, (int, long)) and 0 <= digit <= 9:
# skip leading zeros
if digits or digit != 0:
digits.append(digit)
else:
raise ValueError("The second value in the tuple must "
"be composed of integers in the range "
"0 through 9.")
if value[2] in ('n', 'N'):
# NaN: digits form the diagnostic
self._int = ''.join(map(str, digits))
self._exp = value[2]
self._is_special = True
elif isinstance(value[2], (int, long)):
# finite number: digits give the coefficient
self._int = ''.join(map(str, digits or [0]))
self._exp = value[2]
self._is_special = False
else:
raise ValueError("The third value in the tuple must "
"be an integer, or one of the "
"strings 'F', 'n', 'N'.")
return self
if isinstance(value, float):
raise TypeError("Cannot convert float to Decimal. " +
"First convert the float to a string")
raise TypeError("Cannot convert %r to Decimal" % value)
def _isnan(self):
"""Returns whether the number is not actually one.
0 if a number
1 if NaN (it could be a normal quiet NaN or a phantom one)
2 if sNaN
"""
if self._is_special:
exp = self._exp
if exp == 'n':
return 1
elif exp == 'N':
return 2
return 0
def _isinfinity(self):
"""Returns whether the number is infinite
0 if finite or not a number
1 if +INF
-1 if -INF
"""
if self._exp == 'F':
if self._sign:
return -1
return 1
return 0
def _check_nans(self, other=None, context=None):
"""Returns whether the number is not actually one.
if self, other are sNaN, signal
if self, other are NaN return nan
return 0
Done before operations.
"""
self_is_nan = self._isnan()
if other is None:
other_is_nan = False
else:
other_is_nan = other._isnan()
if self_is_nan or other_is_nan:
if context is None:
context = getcontext()
if self_is_nan == 2:
return context._raise_error(InvalidOperation, 'sNaN',
1, self)
if other_is_nan == 2:
return context._raise_error(InvalidOperation, 'sNaN',
1, other)
if self_is_nan:
return self._fix_nan(context)
return other._fix_nan(context)
return 0
def __nonzero__(self):
"""Return True if self is nonzero; otherwise return False.
NaNs and infinities are considered nonzero.
"""
return self._is_special or self._int != '0'
def __cmp__(self, other):
other = _convert_other(other)
if other is NotImplemented:
# Never return NotImplemented
return 1
if self._is_special or other._is_special:
# check for nans, without raising on a signaling nan
if self._isnan() or other._isnan():
return 1 # Comparison involving NaN's always reports self > other
# INF = INF
return cmp(self._isinfinity(), other._isinfinity())
# check for zeros; note that cmp(0, -0) should return 0
if not self:
if not other:
return 0
else:
return -((-1)**other._sign)
if not other:
return (-1)**self._sign
# If different signs, neg one is less
if other._sign < self._sign:
return -1
if self._sign < other._sign:
return 1
self_adjusted = self.adjusted()
other_adjusted = other.adjusted()
if self_adjusted == other_adjusted:
self_padded = self._int + '0'*(self._exp - other._exp)
other_padded = other._int + '0'*(other._exp - self._exp)
return cmp(self_padded, other_padded) * (-1)**self._sign
elif self_adjusted > other_adjusted:
return (-1)**self._sign
else: # self_adjusted < other_adjusted
return -((-1)**self._sign)
def __eq__(self, other):
if not isinstance(other, (Decimal, int, long)):
return NotImplemented
return self.__cmp__(other) == 0
def __ne__(self, other):
if not isinstance(other, (Decimal, int, long)):
return NotImplemented
return self.__cmp__(other) != 0
def compare(self, other, context=None):
"""Compares one to another.
-1 => a < b
0 => a = b
1 => a > b
NaN => one is NaN
Like __cmp__, but returns Decimal instances.
"""
other = _convert_other(other, raiseit=True)
# Compare(NaN, NaN) = NaN
if (self._is_special or other and other._is_special):
ans = self._check_nans(other, context)
if ans:
return ans
return Decimal(self.__cmp__(other))
def __hash__(self):
"""x.__hash__() <==> hash(x)"""
# Decimal integers must hash the same as the ints
# Non-integer decimals are normalized and hashed as strings
# Normalization assures that hash(100E-1) == hash(10)
if self._is_special:
if self._isnan():
raise TypeError('Cannot hash a NaN value.')
return hash(str(self))
if not self:
return 0
if self._isinteger():
op = _WorkRep(self.to_integral_value())
# to make computation feasible for Decimals with large
# exponent, we use the fact that hash(n) == hash(m) for
# any two nonzero integers n and m such that (i) n and m
# have the same sign, and (ii) n is congruent to m modulo
# 2**64-1. So we can replace hash((-1)**s*c*10**e) with
# hash((-1)**s*c*pow(10, e, 2**64-1).
return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
return hash(str(self.normalize()))
def as_tuple(self):
"""Represents the number as a triple tuple.
To show the internals exactly as they are.
"""
return (self._sign, tuple(map(int, self._int)), self._exp)
def __repr__(self):
"""Represents the number as an instance of Decimal."""
# Invariant: eval(repr(d)) == d
return 'Decimal("%s")' % str(self)
def __str__(self, eng=False, context=None):
"""Return string representation of the number in scientific notation.
Captures all of the information in the underlying representation.
"""
sign = ['', '-'][self._sign]
if self._is_special:
if self._exp == 'F':
return sign + 'Infinity'
elif self._exp == 'n':
return sign + 'NaN' + self._int
else: # self._exp == 'N'
return sign + 'sNaN' + self._int
# number of digits of self._int to left of decimal point
leftdigits = self._exp + len(self._int)
# dotplace is number of digits of self._int to the left of the
# decimal point in the mantissa of the output string (that is,
# after adjusting the exponent)
if self._exp <= 0 and leftdigits > -6:
# no exponent required
dotplace = leftdigits
elif not eng:
# usual scientific notation: 1 digit on left of the point
dotplace = 1
elif self._int == '0':
# engineering notation, zero
dotplace = (leftdigits + 1) % 3 - 1
else:
# engineering notation, nonzero
dotplace = (leftdigits - 1) % 3 + 1
if dotplace <= 0:
intpart = '0'
fracpart = '.' + '0'*(-dotplace) + self._int
elif dotplace >= len(self._int):
intpart = self._int+'0'*(dotplace-len(self._int))
fracpart = ''
else:
intpart = self._int[:dotplace]
fracpart = '.' + self._int[dotplace:]
if leftdigits == dotplace:
exp = ''
else:
if context is None:
context = getcontext()
exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
return sign + intpart + fracpart + exp
def to_eng_string(self, context=None):
"""Convert to engineering-type string.
Engineering notation has an exponent which is a multiple of 3, so there
are up to 3 digits left of the decimal place.
Same rules for when in exponential and when as a value as in __str__.
"""
return self.__str__(eng=True, context=context)
def __neg__(self, context=None):
"""Returns a copy with the sign switched.
Rounds, if it has reason.
"""
if self._is_special:
ans = self._check_nans(context=context)
if ans:
return ans
if not self:
# -Decimal('0') is Decimal('0'), not Decimal('-0')
ans = self.copy_sign(Dec_0)
else:
ans = self.copy_negate()
if context is None:
context = getcontext()
return ans._fix(context)
def __pos__(self, context=None):
"""Returns a copy, unless it is a sNaN.
Rounds the number (if more then precision digits)
"""
if self._is_special:
ans = self._check_nans(context=context)
if ans:
return ans
if not self:
# + (-0) = 0
ans = self.copy_sign(Dec_0)
else:
ans = Decimal(self)
if context is None:
context = getcontext()
return ans._fix(context)
def __abs__(self, round=True, context=None):
"""Returns the absolute value of self.
If the keyword argument 'round' is false, do not round. The
expression self.__abs__(round=False) is equivalent to
self.copy_abs().
"""
if not round:
return self.copy_abs()
if self._is_special:
ans = self._check_nans(context=context)
if ans:
return ans
if self._sign:
ans = self.__neg__(context=context)
else:
ans = self.__pos__(context=context)
return ans
def __add__(self, other, context=None):
"""Returns self + other.
-INF + INF (or the reverse) cause InvalidOperation errors.
"""
other = _convert_other(other)
if other is NotImplemented:
return other
if context is None:
context = getcontext()
if self._is_special or other._is_special:
ans = self._check_nans(other, context)
if ans:
return ans
if self._isinfinity():
# If both INF, same sign => same as both, opposite => error.
if self._sign != other._sign and other._isinfinity():
return context._raise_error(InvalidOperation, '-INF + INF')
return Decimal(self)
if other._isinfinity():
return Decimal(other) # Can't both be infinity here
exp = min(self._exp, other._exp)
negativezero = 0
if context.rounding == ROUND_FLOOR and self._sign != other._sign:
# If the answer is 0, the sign should be negative, in this case.
negativezero = 1
if not self and not other:
sign = min(self._sign, other._sign)
if negativezero:
sign = 1
ans = _dec_from_triple(sign, '0', exp)
ans = ans._fix(context)
return ans
if not self:
exp = max(exp, other._exp - context.prec-1)
ans = other._rescale(exp, context.rounding)
ans = ans._fix(context)
return ans
if not other:
exp = max(exp, self._exp - context.prec-1)
ans = self._rescale(exp, context.rounding)
ans = ans._fix(context)
return ans
op1 = _WorkRep(self)
op2 = _WorkRep(other)
op1, op2 = _normalize(op1, op2, context.prec)
result = _WorkRep()
if op1.sign != op2.sign:
# Equal and opposite
if op1.int == op2.int:
ans = _dec_from_triple(negativezero, '0', exp)
ans = ans._fix(context)
return ans
if op1.int < op2.int:
op1, op2 = op2, op1
# OK, now abs(op1) > abs(op2)
if op1.sign == 1:
result.sign = 1
op1.sign, op2.sign = op2.sign, op1.sign
else:
result.sign = 0
# So we know the sign, and op1 > 0.
elif op1.sign == 1:
result.sign = 1
op1.sign, op2.sign = (0, 0)
else:
result.sign = 0
# Now, op1 > abs(op2) > 0
if op2.sign == 0:
result.int = op1.int + op2.int
else:
result.int = op1.int - op2.int
result.exp = op1.exp
ans = Decimal(result)
ans = ans._fix(context)
return ans
__radd__ = __add__
def __sub__(self, other, context=None):
"""Return self - other"""
other = _convert_other(other)
if other is NotImplemented:
return other
if self._is_special or other._is_special:
ans = self._check_nans(other, context=context)
if ans:
return ans
# self - other is computed as self + other.copy_negate()
return self.__add__(other.copy_negate(), context=context)
def __rsub__(self, other, context=None):
"""Return other - self"""
other = _convert_other(other)
if other is NotImplemented:
return other
return other.__sub__(self, context=context)
def __mul__(self, other, context=None):
"""Return self * other.
(+-) INF * 0 (or its reverse) raise InvalidOperation.
"""
other = _convert_other(other)
if other is NotImplemented:
return other
if context is None:
context = getcontext()
resultsign = self._sign ^ other._sign
if self._is_special or other._is_special:
ans = self._check_nans(other, context)
if ans:
return ans
if self._isinfinity():
if not other:
return context._raise_error(InvalidOperation, '(+-)INF * 0')
return Infsign[resultsign]
if other._isinfinity():
if not self:
return context._raise_error(InvalidOperation, '0 * (+-)INF')
return Infsign[resultsign]
resultexp = self._exp + other._exp
# Special case for multiplying by zero
if not self or not other:
ans = _dec_from_triple(resultsign, '0', resultexp)
# Fixing in case the exponent is out of bounds
ans = ans._fix(context)
return ans
# Special case for multiplying by power of 10
if self._int == '1':
ans = _dec_from_triple(resultsign, other._int, resultexp)
ans = ans._fix(context)
return ans
if other._int == '1':
ans = _dec_from_triple(resultsign, self._int, resultexp)
ans = ans._fix(context)
return ans
op1 = _WorkRep(self)
op2 = _WorkRep(other)
ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
ans = ans._fix(context)
return ans
__rmul__ = __mul__
def __div__(self, other, context=None):
"""Return self / other."""
other = _convert_other(other)
if other is NotImplemented:
return NotImplemented
if context is None:
context = getcontext()
sign = self._sign ^ other._sign
if self._is_special or other._is_special:
ans = self._check_nans(other, context)
if ans:
return ans
if self._isinfinity() and other._isinfinity():
return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
if self._isinfinity():
return Infsign[sign]
if other._isinfinity():
context._raise_error(Clamped, 'Division by infinity')
return _dec_from_triple(sign, '0', context.Etiny())
# Special cases for zeroes
if not other:
if not self:
return context._raise_error(DivisionUndefined, '0 / 0')
return context._raise_error(DivisionByZero, 'x / 0', sign)
if not self:
exp = self._exp - other._exp
coeff = 0
else:
# OK, so neither = 0, INF or NaN
shift = len(other._int) - len(self._int) + context.prec + 1
exp = self._exp - other._exp - shift
op1 = _WorkRep(self)
op2 = _WorkRep(other)
if shift >= 0:
coeff, remainder = divmod(op1.int * 10**shift, op2.int)
else:
coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
if remainder:
# result is not exact; adjust to ensure correct rounding
if coeff % 5 == 0:
coeff += 1
else:
# result is exact; get as close to ideal exponent as possible
ideal_exp = self._exp - other._exp
while exp < ideal_exp and coeff % 10 == 0:
coeff //= 10
exp += 1
ans = _dec_from_triple(sign, str(coeff), exp)
return ans._fix(context)
__truediv__ = __div__
def _divide(self, other, context):
"""Return (self // other, self % other), to context.prec precision.
Assumes that neither self nor other is a NaN, that self is not
infinite and that other is nonzero.
"""
sign = self._sign ^ other._sign
if other._isinfinity():
ideal_exp = self._exp
else:
ideal_exp = min(self._exp, other._exp)
expdiff = self.adjusted() - other.adjusted()
if not self or other._isinfinity() or expdiff <= -2:
return (_dec_from_triple(sign, '0', 0),
self._rescale(ideal_exp, context.rounding))
if expdiff <= context.prec:
op1 = _WorkRep(self)
op2 = _WorkRep(other)
if op1.exp >= op2.exp:
op1.int *= 10**(op1.exp - op2.exp)
else:
op2.int *= 10**(op2.exp - op1.exp)
q, r = divmod(op1.int, op2.int)
if q < 10**context.prec:
return (_dec_from_triple(sign, str(q), 0),
_dec_from_triple(self._sign, str(r), ideal_exp))
# Here the quotient is too large to be representable
ans = context._raise_error(DivisionImpossible,
'quotient too large in //, % or divmod')
return ans, ans
def __rdiv__(self, other, context=None):
"""Swaps self/other and returns __div__."""
other = _convert_other(other)
if other is NotImplemented:
return other
return other.__div__(self, context=context)
__rtruediv__ = __rdiv__
def __divmod__(self, other, context=None):
"""
Return (self // other, self % other)
"""
other = _convert_other(other)
if other is NotImplemented:
return other
if context is None:
context = getcontext()
ans = self._check_nans(other, context)
if ans:
return (ans, ans)
sign = self._sign ^ other._sign
if self._isinfinity():
if other._isinfinity():
ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
return ans, ans
else:
return (Infsign[sign],
context._raise_error(InvalidOperation, 'INF % x'))
if not other:
if not self:
ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
return ans, ans
else:
return (context._raise_error(DivisionByZero, 'x // 0', sign),
context._raise_error(InvalidOperation, 'x % 0'))
quotient, remainder = self._divide(other, context)
remainder = remainder._fix(context)
return quotient, remainder
def __rdivmod__(self, other, context=None):
"""Swaps self/other and returns __divmod__."""
other = _convert_other(other)
if other is NotImplemented:
return other
return other.__divmod__(self, context=context)
def __mod__(self, other, context=None):
"""
self % other
"""
other = _convert_other(other)
if other is NotImplemented:
return other
if context is None:
context = getcontext()
ans = self._check_nans(other, context)
if ans:
return ans
if self._isinfinity():
return context._raise_error(InvalidOperation, 'INF % x')
elif not other:
if self:
return context._raise_error(InvalidOperation, 'x % 0')
else:
return context._raise_error(DivisionUndefined, '0 % 0')
remainder = self._divide(other, context)[1]
remainder = remainder._fix(context)
return remainder
def __rmod__(self, other, context=None):
"""Swaps self/other and returns __mod__."""
other = _convert_other(other)
if other is NotImplemented:
return other
return other.__mod__(self, context=context)
def remainder_near(self, other, context=None):
"""
Remainder nearest to 0- abs(remainder-near) <= other/2
"""
if context is None:
context = getcontext()
other = _convert_other(other, raiseit=True)
ans = self._check_nans(other, context)
if ans:
return ans
# self == +/-infinity -> InvalidOperation
if self._isinfinity():
return context._raise_error(InvalidOperation,
'remainder_near(infinity, x)')
# other == 0 -> either InvalidOperation or DivisionUndefined
if not other:
if self:
return context._raise_error(InvalidOperation,
'remainder_near(x, 0)')
else:
return context._raise_error(DivisionUndefined,
'remainder_near(0, 0)')
# other = +/-infinity -> remainder = self
if other._isinfinity():
ans = Decimal(self)
return ans._fix(context)
# self = 0 -> remainder = self, with ideal exponent
ideal_exponent = min(self._exp, other._exp)
if not self:
ans = _dec_from_triple(self._sign, '0', ideal_exponent)
return ans._fix(context)
# catch most cases of large or small quotient
expdiff = self.adjusted() - other.adjusted()
if expdiff >= context.prec + 1:
# expdiff >= prec+1 => abs(self/other) > 10**prec
return context._raise_error(DivisionImpossible)
if expdiff <= -2:
# expdiff <= -2 => abs(self/other) < 0.1
ans = self._rescale(ideal_exponent, context.rounding)
return ans._fix(context)
# adjust both arguments to have the same exponent, then divide
op1 = _WorkRep(self)
op2 = _WorkRep(other)
if op1.exp >= op2.exp:
op1.int *= 10**(op1.exp - op2.exp)
else:
op2.int *= 10**(op2.exp - op1.exp)
q, r = divmod(op1.int, op2.int)
# remainder is r*10**ideal_exponent; other is +/-op2.int *
# 10**ideal_exponent. Apply correction to ensure that
# abs(remainder) <= abs(other)/2
if 2*r + (q&1) > op2.int:
r -= op2.int
q += 1
if q >= 10**context.prec:
return context._raise_error(DivisionImpossible)
# result has same sign as self unless r is negative
sign = self._sign
if r < 0:
sign = 1-sign
r = -r
ans = _dec_from_triple(sign, str(r), ideal_exponent)
return ans._fix(context)
def __floordiv__(self, other, context=None):
"""self // other"""
other = _convert_other(other)
if other is NotImplemented:
return other
if context is None:
context = getcontext()
ans = self._check_nans(other, context)
if ans:
return ans
if self._isinfinity():
if other._isinfinity():
return context._raise_error(InvalidOperation, 'INF // INF')
else:
return Infsign[self._sign ^ other._sign]
if not other:
if self:
return context._raise_error(DivisionByZero, 'x // 0',
self._sign ^ other._sign)
else:
return context._raise_error(DivisionUndefined, '0 // 0')
return self._divide(other, context)[0]
def __rfloordiv__(self, other, context=None):
"""Swaps self/other and returns __floordiv__."""
other = _convert_other(other)
if other is NotImplemented:
return other
return other.__floordiv__(self, context=context)
def __float__(self):
"""Float representation."""
return float(str(self))
def __int__(self):
"""Converts self to an int, truncating if necessary."""
if self._is_special:
if self._isnan():
context = getcontext()
return context._raise_error(InvalidContext)
elif self._isinfinity():
raise OverflowError("Cannot convert infinity to long")
s = (-1)**self._sign
if self._exp >= 0:
return s*int(self._int)*10**self._exp
else:
return s*int(self._int[:self._exp] or '0')
def __long__(self):
"""Converts to a long.
Equivalent to long(int(self))
"""
return long(self.__int__())
def _fix_nan(self, context):
"""Decapitate the payload of a NaN to fit the context"""
payload = self._int
# maximum length of payload is precision if _clamp=0,
# precision-1 if _clamp=1.
max_payload_len = context.prec - context._clamp
if len(payload) > max_payload_len:
payload = payload[len(payload)-max_payload_len:].lstrip('0')
return _dec_from_triple(self._sign, payload, self._exp, True)
return Decimal(self)
def _fix(self, context):
"""Round if it is necessary to keep self within prec precision.
Rounds and fixes the exponent. Does not raise on a sNaN.
Arguments:
self - Decimal instance
context - context used.
"""
if context is None:
context = getcontext()
if self._is_special:
if self._isnan():
# decapitate payload if necessary
return self._fix_nan(context)
else:
# self is +/-Infinity; return unaltered
return Decimal(self)
# if self is zero then exponent should be between Etiny and
# Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
Etiny = context.Etiny()
Etop = context.Etop()
if not self:
exp_max = [context.Emax, Etop][context._clamp]
new_exp = min(max(self._exp, Etiny), exp_max)
if new_exp != self._exp:
context._raise_error(Clamped)
return _dec_from_triple(self._sign, '0', new_exp)
else:
return Decimal(self)
# exp_min is the smallest allowable exponent of the result,
# equal to max(self.adjusted()-context.prec+1, Etiny)
exp_min = len(self._int) + self._exp - context.prec
if exp_min > Etop:
# overflow: exp_min > Etop iff self.adjusted() > Emax
context._raise_error(Inexact)
context._raise_error(Rounded)
return context._raise_error(Overflow, 'above Emax', self._sign)
self_is_subnormal = exp_min < Etiny
if self_is_subnormal:
context._raise_error(Subnormal)
exp_min = Etiny
# round if self has too many digits
if self._exp < exp_min:
context._raise_error(Rounded)
digits = len(self._int) + self._exp - exp_min
if digits < 0:
self = _dec_from_triple(self._sign, '1', exp_min-1)
digits = 0
this_function = getattr(self, self._pick_rounding_function[context.rounding])
changed = this_function(digits)
coeff = self._int[:digits] or '0'
if changed == 1:
coeff = str(int(coeff)+1)
ans = _dec_from_triple(self._sign, coeff, exp_min)
if changed:
context._raise_error(Inexact)
if self_is_subnormal:
context._raise_error(Underflow)
if not ans:
# raise Clamped on underflow to 0
context._raise_error(Clamped)
elif len(ans._int) == context.prec+1:
# we get here only if rescaling rounds the
# cofficient up to exactly 10**context.prec
if ans._exp < Etop:
ans = _dec_from_triple(ans._sign,
ans._int[:-1], ans._exp+1)
else:
# Inexact and Rounded have already been raised
ans = context._raise_error(Overflow, 'above Emax',
self._sign)
return ans
# fold down if _clamp == 1 and self has too few digits
if context._clamp == 1 and self._exp > Etop:
context._raise_error(Clamped)
self_padded = self._int + '0'*(self._exp - Etop)
return _dec_from_triple(self._sign, self_padded, Etop)
# here self was representable to begin with; return unchanged
return Decimal(self)
_pick_rounding_function = {}
# for each of the rounding functions below:
# self is a finite, nonzero Decimal
# prec is an integer satisfying 0 <= prec < len(self._int)
#
# each function returns either -1, 0, or 1, as follows:
# 1 indicates that self should be rounded up (away from zero)
# 0 indicates that self should be truncated, and that all the
# digits to be truncated are zeros (so the value is unchanged)
# -1 indicates that there are nonzero digits to be truncated
def _round_down(self, prec):
"""Also known as round-towards-0, truncate."""
if _all_zeros(self._int, prec):
return 0
else:
return -1
def _round_up(self, prec):
"""Rounds away from 0."""
return -self._round_down(prec)
def _round_half_up(self, prec):
"""Rounds 5 up (away from 0)"""
if self._int[prec] in '56789':
return 1
elif _all_zeros(self._int, prec):
return 0
else:
return -1
def _round_half_down(self, prec):
"""Round 5 down"""
if _exact_half(self._int, prec):
return -1
else:
return self._round_half_up(prec)
def _round_half_even(self, prec):
"""Round 5 to even, rest to nearest."""
if _exact_half(self._int, prec) and \
(prec == 0 or self._int[prec-1] in '02468'):
return -1
else:
return self._round_half_up(prec)
def _round_ceiling(self, prec):
"""Rounds up (not away from 0 if negative.)"""
if self._sign:
return self._round_down(prec)
else:
return -self._round_down(prec)
def _round_floor(self, prec):
"""Rounds down (not towards 0 if negative)"""
if not self._sign:
return self._round_down(prec)
else:
return -self._round_down(prec)
def _round_05up(self, prec):
"""Round down unless digit prec-1 is 0 or 5."""
if prec and self._int[prec-1] not in '05':
return self._round_down(prec)
else:
return -self._round_down(prec)
def fma(self, other, third, context=None):
"""Fused multiply-add.
Returns self*other+third with no rounding of the intermediate
product self*other.
self and other are multiplied together, with no rounding of
the result. The third operand is then added to the result,
and a single final rounding is performed.
"""
other = _convert_other(other, raiseit=True)
# compute product; raise InvalidOperation if either operand is
# a signaling NaN or if the product is zero times infinity.
if self._is_special or other._is_special:
if context is None:
context = getcontext()
if self._exp == 'N':
return context._raise_error(InvalidOperation, 'sNaN',
1, self)
if other._exp == 'N':
return context._raise_error(InvalidOperation, 'sNaN',
1, other)
if self._exp == 'n':
product = self
elif other._exp == 'n':
product = other
elif self._exp == 'F':
if not other:
return context._raise_error(InvalidOperation,
'INF * 0 in fma')
product = Infsign[self._sign ^ other._sign]
elif other._exp == 'F':
if not self:
return context._raise_error(InvalidOperation,
'0 * INF in fma')
product = Infsign[self._sign ^ other._sign]
else:
product = _dec_from_triple(self._sign ^ other._sign,
str(int(self._int) * int(other._int)),
self._exp + other._exp)
third = _convert_other(third, raiseit=True)
return product.__add__(third, context)
def _power_modulo(self, other, modulo, context=None):
"""Three argument version of __pow__"""
# if can't convert other and modulo to Decimal, raise
# TypeError; there's no point returning NotImplemented (no
# equivalent of __rpow__ for three argument pow)
other = _convert_other(other, raiseit=True)
modulo = _convert_other(modulo, raiseit=True)
if context is None:
context = getcontext()
# deal with NaNs: if there are any sNaNs then first one wins,
# (i.e. behaviour for NaNs is identical to that of fma)
self_is_nan = self._isnan()
other_is_nan = other._isnan()
modulo_is_nan = modulo._isnan()
if self_is_nan or other_is_nan or modulo_is_nan:
if self_is_nan == 2:
return context._raise_error(InvalidOperation, 'sNaN',
1, self)
if other_is_nan == 2:
return context._raise_error(InvalidOperation, 'sNaN',
1, other)
if modulo_is_nan == 2:
return context._raise_error(InvalidOperation, 'sNaN',
1, modulo)
if self_is_nan:
return self._fix_nan(context)
if other_is_nan:
return other._fix_nan(context)
return modulo._fix_nan(context)
# check inputs: we apply same restrictions as Python's pow()
if not (self._isinteger() and
other._isinteger() and
modulo._isinteger()):
return context._raise_error(InvalidOperation,
'pow() 3rd argument not allowed '
'unless all arguments are integers')
if other < 0:
return context._raise_error(InvalidOperation,
'pow() 2nd argument cannot be '
'negative when 3rd argument specified')
if not modulo:
return context._raise_error(InvalidOperation,
'pow() 3rd argument cannot be 0')
# additional restriction for decimal: the modulus must be less
# than 10**prec in absolute value
if modulo.adjusted() >= context.prec:
return context._raise_error(InvalidOperation,
'insufficient precision: pow() 3rd '
'argument must not have more than '
'precision digits')
# define 0**0 == NaN, for consistency with two-argument pow
# (even though it hurts!)
if not other and not self:
return context._raise_error(InvalidOperation,
'at least one of pow() 1st argument '
'and 2nd argument must be nonzero ;'
'0**0 is not defined')
# compute sign of result
if other._iseven():
sign = 0
else:
sign = self._sign
# convert modulo to a Python integer, and self and other to
# Decimal integers (i.e. force their exponents to be >= 0)
modulo = abs(int(modulo))
base = _WorkRep(self.to_integral_value())
exponent = _WorkRep(other.to_integral_value())
# compute result using integer pow()
base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
for i in xrange(exponent.exp):
base = pow(base, 10, modulo)
base = pow(base, exponent.int, modulo)
return _dec_from_triple(sign, str(base), 0)
def _power_exact(self, other, p):
"""Attempt to compute self**other exactly.
Given Decimals self and other and an integer p, attempt to
compute an exact result for the power self**other, with p
digits of precision. Return None if self**other is not
exactly representable in p digits.
Assumes that elimination of special cases has already been
performed: self and other must both be nonspecial; self must
be positive and not numerically equal to 1; other must be
nonzero. For efficiency, other._exp should not be too large,
so that 10**abs(other._exp) is a feasible calculation."""
# In the comments below, we write x for the value of self and
# y for the value of other. Write x = xc*10**xe and y =
# yc*10**ye.
# The main purpose of this method is to identify the *failure*
# of x**y to be exactly representable with as little effort as
# possible. So we look for cheap and easy tests that
# eliminate the possibility of x**y being exact. Only if all
# these tests are passed do we go on to actually compute x**y.
# Here's the main idea. First normalize both x and y. We
# express y as a rational m/n, with m and n relatively prime
# and n>0. Then for x**y to be exactly representable (at
# *any* precision), xc must be the nth power of a positive
# integer and xe must be divisible by n. If m is negative
# then additionally xc must be a power of either 2 or 5, hence
# a power of 2**n or 5**n.
#
# There's a limit to how small |y| can be: if y=m/n as above
# then:
#
# (1) if xc != 1 then for the result to be representable we
# need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
# if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
# 2**(1/|y|), hence xc**|y| < 2 and the result is not
# representable.
#
# (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
# |y| < 1/|xe| then the result is not representable.
#
# Note that since x is not equal to 1, at least one of (1) and
# (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
# 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
#
# There's also a limit to how large y can be, at least if it's
# positive: the normalized result will have coefficient xc**y,
# so if it's representable then xc**y < 10**p, and y <
# p/log10(xc). Hence if y*log10(xc) >= p then the result is
# not exactly representable.
# if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
# so |y| < 1/xe and the result is not representable.
# Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
# < 1/nbits(xc).
x = _WorkRep(self)
xc, xe = x.int, x.exp
while xc % 10 == 0:
xc //= 10
xe += 1
y = _WorkRep(other)
yc, ye = y.int, y.exp
while yc % 10 == 0:
yc //= 10
ye += 1
# case where xc == 1: result is 10**(xe*y), with xe*y
# required to be an integer
if xc == 1:
if ye >= 0:
exponent = xe*yc*10**ye
else:
exponent, remainder = divmod(xe*yc, 10**-ye)
if remainder:
return None
if y.sign == 1:
exponent = -exponent
# if other is a nonnegative integer, use ideal exponent
if other._isinteger() and other._sign == 0:
ideal_exponent = self._exp*int(other)
zeros = min(exponent-ideal_exponent, p-1)
else:
zeros = 0
return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
# case where y is negative: xc must be either a power
# of 2 or a power of 5.
if y.sign == 1:
last_digit = xc % 10
if last_digit in (2,4,6,8):
# quick test for power of 2
if xc & -xc != xc:
return None
# now xc is a power of 2; e is its exponent
e = _nbits(xc)-1
# find e*y and xe*y; both must be integers
if ye >= 0:
y_as_int = yc*10**ye
e = e*y_as_int
xe = xe*y_as_int
else:
ten_pow = 10**-ye
e, remainder = divmod(e*yc, ten_pow)
if remainder:
return None
xe, remainder = divmod(xe*yc, ten_pow)
if remainder:
return None
if e*65 >= p*93: # 93/65 > log(10)/log(5)
return None
xc = 5**e
elif last_digit == 5:
# e >= log_5(xc) if xc is a power of 5; we have
# equality all the way up to xc=5**2658
e = _nbits(xc)*28//65
xc, remainder = divmod(5**e, xc)
if remainder:
return None
while xc % 5 == 0:
xc //= 5
e -= 1
if ye >= 0:
y_as_integer = yc*10**ye
e = e*y_as_integer
xe = xe*y_as_integer
else:
ten_pow = 10**-ye
e, remainder = divmod(e*yc, ten_pow)
if remainder:
return None
xe, remainder = divmod(xe*yc, ten_pow)
if remainder:
return None
if e*3 >= p*10: # 10/3 > log(10)/log(2)
return None
xc = 2**e
else:
return None
if xc >= 10**p:
return None
xe = -e-xe
return _dec_from_triple(0, str(xc), xe)
# now y is positive; find m and n such that y = m/n
if ye >= 0:
m, n = yc*10**ye, 1
else:
if xe != 0 and len(str(abs(yc*xe))) <= -ye:
return None
xc_bits = _nbits(xc)
if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
return None
m, n = yc, 10**(-ye)
while m % 2 == n % 2 == 0:
m //= 2
n //= 2
while m % 5 == n % 5 == 0:
m //= 5
n //= 5
# compute nth root of xc*10**xe
if n > 1:
# if 1 < xc < 2**n then xc isn't an nth power
if xc != 1 and xc_bits <= n:
return None
xe, rem = divmod(xe, n)
if rem != 0:
return None
# compute nth root of xc using Newton's method
a = 1L << -(-_nbits(xc)//n) # initial estimate
while True:
q, r = divmod(xc, a**(n-1))
if a <= q:
break
else:
a = (a*(n-1) + q)//n
if not (a == q and r == 0):
return None
xc = a
# now xc*10**xe is the nth root of the original xc*10**xe
# compute mth power of xc*10**xe
# if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
# 10**p and the result is not representable.
if xc > 1 and m > p*100//_log10_lb(xc):
return None
xc = xc**m
xe *= m
if xc > 10**p:
return None
# by this point the result *is* exactly representable
# adjust the exponent to get as close as possible to the ideal
# exponent, if necessary
str_xc = str(xc)
if other._isinteger() and other._sign == 0:
ideal_exponent = self._exp*int(other)
zeros = min(xe-ideal_exponent, p-len(str_xc))
else:
zeros = 0
return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
def __pow__(self, other, modulo=None, context=None):
"""Return self ** other [ % modulo].
With two arguments, compute self**other.
With three arguments, compute (self**other) % modulo. For the
three argument form, the following restrictions on the
arguments hold:
- all three arguments must be integral
- other must be nonnegative
- either self or other (or both) must be nonzero
- modulo must be nonzero and must have at most p digits,
where p is the context precision.
If any of these restrictions is violated the InvalidOperation
flag is raised.
The result of pow(self, other, modulo) is identical to the
result that would be obtained by computing (self**other) %
modulo with unbounded precision, but is computed more
efficiently. It is always exact.
"""
if modulo is not None:
return self._power_modulo(other, modulo, context)
other = _convert_other(other)
if other is NotImplemented:
return other
if context is None:
context = getcontext()
# either argument is a NaN => result is NaN
ans = self._check_nans(other, context)
if ans:
return ans
# 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
if not other:
if not self:
return context._raise_error(InvalidOperation, '0 ** 0')
else:
return Dec_p1
# result has sign 1 iff self._sign is 1 and other is an odd integer
result_sign = 0
if self._sign == 1:
if other._isinteger():
if not other._iseven():
result_sign = 1
else:
# -ve**noninteger = NaN
# (-0)**noninteger = 0**noninteger
if self:
return context._raise_error(InvalidOperation,
'x ** y with x negative and y not an integer')
# negate self, without doing any unwanted rounding
self = self.copy_negate()
# 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
if not self:
if other._sign == 0:
return _dec_from_triple(result_sign, '0', 0)
else:
return Infsign[result_sign]
# Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
if self._isinfinity():
if other._sign == 0:
return Infsign[result_sign]
else:
return _dec_from_triple(result_sign, '0', 0)
# 1**other = 1, but the choice of exponent and the flags
# depend on the exponent of self, and on whether other is a
# positive integer, a negative integer, or neither
if self == Dec_p1:
if other._isinteger():
# exp = max(self._exp*max(int(other), 0),
# 1-context.prec) but evaluating int(other) directly
# is dangerous until we know other is small (other
# could be 1e999999999)
if other._sign == 1:
multiplier = 0
elif other > context.prec:
multiplier = context.prec
else:
multiplier = int(other)
exp = self._exp * multiplier
if exp < 1-context.prec:
exp = 1-context.prec
context._raise_error(Rounded)
else:
context._raise_error(Inexact)
context._raise_error(Rounded)
exp = 1-context.prec
return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
# compute adjusted exponent of self
self_adj = self.adjusted()
# self ** infinity is infinity if self > 1, 0 if self < 1
# self ** -infinity is infinity if self < 1, 0 if self > 1
if other._isinfinity():
if (other._sign == 0) == (self_adj < 0):
return _dec_from_triple(result_sign, '0', 0)
else:
return Infsign[result_sign]
# from here on, the result always goes through the call
# to _fix at the end of this function.
ans = None
# crude test to catch cases of extreme overflow/underflow. If
# log10(self)*other >= 10**bound and bound >= len(str(Emax))
# then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
# self**other >= 10**(Emax+1), so overflow occurs. The test
# for underflow is similar.
bound = self._log10_exp_bound() + other.adjusted()
if (self_adj >= 0) == (other._sign == 0):
# self > 1 and other +ve, or self < 1 and other -ve
# possibility of overflow
if bound >= len(str(context.Emax)):
ans = _dec_from_triple(result_sign, '1', context.Emax+1)
else:
# self > 1 and other -ve, or self < 1 and other +ve
# possibility of underflow to 0
Etiny = context.Etiny()
if bound >= len(str(-Etiny)):
ans = _dec_from_triple(result_sign, '1', Etiny-1)
# try for an exact result with precision +1
if ans is None:
ans = self._power_exact(other, context.prec + 1)
if ans is not None and result_sign == 1:
ans = _dec_from_triple(1, ans._int, ans._exp)
# usual case: inexact result, x**y computed directly as exp(y*log(x))
if ans is None:
p = context.prec
x = _WorkRep(self)
xc, xe = x.int, x.exp
y = _WorkRep(other)
yc, ye = y.int, y.exp
if y.sign == 1:
yc = -yc
# compute correctly rounded result: start with precision +3,
# then increase precision until result is unambiguously roundable
extra = 3
while True:
coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
if coeff % (5*10**(len(str(coeff))-p-1)):
break
extra += 3
ans = _dec_from_triple(result_sign, str(coeff), exp)
# the specification says that for non-integer other we need to
# raise Inexact, even when the result is actually exact. In
# the same way, we need to raise Underflow here if the result
# is subnormal. (The call to _fix will take care of raising
# Rounded and Subnormal, as usual.)
if not other._isinteger():
context._raise_error(Inexact)
# pad with zeros up to length context.prec+1 if necessary
if len(ans._int) <= context.prec:
expdiff = context.prec+1 - len(ans._int)
ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
ans._exp-expdiff)
if ans.adjusted() < context.Emin:
context._raise_error(Underflow)
# unlike exp, ln and log10, the power function respects the
# rounding mode; no need to use ROUND_HALF_EVEN here
ans = ans._fix(context)
return ans
def __rpow__(self, other, context=None):
"""Swaps self/other and returns __pow__."""
other = _convert_other(other)
if other is NotImplemented:
return other
return other.__pow__(self, context=context)
def normalize(self, context=None):
"""Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
if context is None:
context = getcontext()
if self._is_special:
ans = self._check_nans(context=context)
if ans:
return ans
dup = self._fix(context)
if dup._isinfinity():
return dup
if not dup:
return _dec_from_triple(dup._sign, '0', 0)
exp_max = [context.Emax, context.Etop()][context._clamp]
end = len(dup._int)
exp = dup._exp
while dup._int[end-1] == '0' and exp < exp_max:
exp += 1
end -= 1
return _dec_from_triple(dup._sign, dup._int[:end], exp)
def quantize(self, exp, rounding=None, context=None, watchexp=True):
"""Quantize self so its exponent is the same as that of exp.
Similar to self._rescale(exp._exp) but with error checking.
"""
exp = _convert_other(exp, raiseit=True)
if context is None:
context = getcontext()
if rounding is None:
rounding = context.rounding
if self._is_special or exp._is_special:
ans = self._check_nans(exp, context)
if ans:
return ans
if exp._isinfinity() or self._isinfinity():
if exp._isinfinity() and self._isinfinity():
return Decimal(self) # if both are inf, it is OK
return context._raise_error(InvalidOperation,
'quantize with one INF')
# if we're not watching exponents, do a simple rescale
if not watchexp:
ans = self._rescale(exp._exp, rounding)
# raise Inexact and Rounded where appropriate
if ans._exp > self._exp:
context._raise_error(Rounded)
if ans != self:
context._raise_error(Inexact)
return ans
# exp._exp should be between Etiny and Emax
if not (context.Etiny() <= exp._exp <= context.Emax):
return context._raise_error(InvalidOperation,
'target exponent out of bounds in quantize')
if not self:
ans = _dec_from_triple(self._sign, '0', exp._exp)
return ans._fix(context)
self_adjusted = self.adjusted()
if self_adjusted > context.Emax:
return context._raise_error(InvalidOperation,
'exponent of quantize result too large for current context')
if self_adjusted - exp._exp + 1 > context.prec:
return context._raise_error(InvalidOperation,
'quantize result has too many digits for current context')
ans = self._rescale(exp._exp, rounding)
if ans.adjusted() > context.Emax:
return context._raise_error(InvalidOperation,
'exponent of quantize result too large for current context')
if len(ans._int) > context.prec:
return context._raise_error(InvalidOperation,
'quantize result has too many digits for current context')
# raise appropriate flags
if ans._exp > self._exp:
context._raise_error(Rounded)
if ans != self:
context._raise_error(Inexact)
if ans and ans.adjusted() < context.Emin:
context._raise_error(Subnormal)
# call to fix takes care of any necessary folddown
ans = ans._fix(context)
return ans
def same_quantum(self, other):
"""Return True if self and other have the same exponent; otherwise
return False.
If either operand is a special value, the following rules are used:
* return True if both operands are infinities
* return True if both operands are NaNs
* otherwise, return False.
"""
other = _convert_other(other, raiseit=True)
if self._is_special or other._is_special:
return (self.is_nan() and other.is_nan() or
self.is_infinite() and other.is_infinite())
return self._exp == other._exp
def _rescale(self, exp, rounding):
"""Rescale self so that the exponent is exp, either by padding with zeros
or by truncating digits, using the given rounding mode.
Specials are returned without change. This operation is
quiet: it raises no flags, and uses no information from the
context.
exp = exp to scale to (an integer)
rounding = rounding mode
"""
if self._is_special:
return Decimal(self)
if not self:
return _dec_from_triple(self._sign, '0', exp)
if self._exp >= exp:
# pad answer with zeros if necessary
return _dec_from_triple(self._sign,
self._int + '0'*(self._exp - exp), exp)
# too many digits; round and lose data. If self.adjusted() <
# exp-1, replace self by 10**(exp-1) before rounding
digits = len(self._int) + self._exp - exp
if digits < 0:
self = _dec_from_triple(self._sign, '1', exp-1)
digits = 0
this_function = getattr(self, self._pick_rounding_function[rounding])
changed = this_function(digits)
coeff = self._int[:digits] or '0'
if changed == 1:
coeff = str(int(coeff)+1)
return _dec_from_triple(self._sign, coeff, exp)
def to_integral_exact(self, rounding=None, context=None):
"""Rounds to a nearby integer.
If no rounding mode is specified, take the rounding mode from
the context. This method raises the Rounded and Inexact flags
when appropriate.
See also: to_integral_value, which does exactly the same as
this method except that it doesn't raise Inexact or Rounded.
"""
if self._is_special:
ans = self._check_nans(context=context)
if ans:
return ans
return Decimal(self)
if self._exp >= 0:
return Decimal(self)
if not self:
return _dec_from_triple(self._sign, '0', 0)
if context is None:
context = getcontext()
if rounding is None:
rounding = context.rounding
context._raise_error(Rounded)
ans = self._rescale(0, rounding)
if ans != self:
context._raise_error(Inexact)
return ans
def to_integral_value(self, rounding=None, context=None):
"""Rounds to the nearest integer, without raising inexact, rounded."""
if context is None:
context = getcontext()
if rounding is None:
rounding = context.rounding
if self._is_special:
ans = self._check_nans(context=context)
if ans:
return ans
return Decimal(self)
if self._exp >= 0:
return Decimal(self)
else:
return self._rescale(0, rounding)
# the method name changed, but we provide also the old one, for compatibility
to_integral = to_integral_value
def sqrt(self, context=None):
"""Return the square root of self."""
if self._is_special:
ans = self._check_nans(context=context)
if ans:
return ans
if self._isinfinity() and self._sign == 0:
return Decimal(self)
if not self:
# exponent = self._exp // 2. sqrt(-0) = -0
ans = _dec_from_triple(self._sign, '0', self._exp // 2)
return ans._fix(context)
if context is None:
context = getcontext()
if self._sign == 1:
return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
# At this point self represents a positive number. Let p be
# the desired precision and express self in the form c*100**e
# with c a positive real number and e an integer, c and e
# being chosen so that 100**(p-1) <= c < 100**p. Then the
# (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
# <= sqrt(c) < 10**p, so the closest representable Decimal at
# precision p is n*10**e where n = round_half_even(sqrt(c)),
# the closest integer to sqrt(c) with the even integer chosen
# in the case of a tie.
#
# To ensure correct rounding in all cases, we use the
# following trick: we compute the square root to an extra
# place (precision p+1 instead of precision p), rounding down.
# Then, if the result is inexact and its last digit is 0 or 5,
# we increase the last digit to 1 or 6 respectively; if it's
# exact we leave the last digit alone. Now the final round to
# p places (or fewer in the case of underflow) will round
# correctly and raise the appropriate flags.
# use an extra digit of precision
prec = context.prec+1
# write argument in the form c*100**e where e = self._exp//2
# is the 'ideal' exponent, to be used if the square root is
# exactly representable. l is the number of 'digits' of c in
# base 100, so that 100**(l-1) <= c < 100**l.
op = _WorkRep(self)
e = op.exp >> 1
if op.exp & 1:
c = op.int * 10
l = (len(self._int) >> 1) + 1
else:
c = op.int
l = len(self._int)+1 >> 1
# rescale so that c has exactly prec base 100 'digits'
shift = prec-l
if shift >= 0:
c *= 100**shift
exact = True
else:
c, remainder = divmod(c, 100**-shift)
exact = not remainder
e -= shift
# find n = floor(sqrt(c)) using Newton's method
n = 10**prec
while True:
q = c//n
if n <= q:
break
else:
n = n + q >> 1
exact = exact and n*n == c
if exact:
# result is exact; rescale to use ideal exponent e
if shift >= 0:
# assert n % 10**shift == 0
n //= 10**shift
else:
n *= 10**-shift
e += shift
else:
# result is not exact; fix last digit as described above
if n % 5 == 0:
n += 1
ans = _dec_from_triple(0, str(n), e)
# round, and fit to current context
context = context._shallow_copy()
rounding = context._set_rounding(ROUND_HALF_EVEN)
ans = ans._fix(context)
context.rounding = rounding
return ans
def max(self, other, context=None):
"""Returns the larger value.
Like max(self, other) except if one is not a number, returns
NaN (and signals if one is sNaN). Also rounds.
"""
other = _convert_other(other, raiseit=True)
if context is None:
context = getcontext()
if self._is_special or other._is_special:
# If one operand is a quiet NaN and the other is number, then the
# number is always returned
sn = self._isnan()
on = other._isnan()
if sn or on:
if on == 1 and sn != 2:
return self._fix_nan(context)
if sn == 1 and on != 2:
return other._fix_nan(context)
return self._check_nans(other, context)
c = self.__cmp__(other)
if c == 0:
# If both operands are finite and equal in numerical value
# then an ordering is applied:
#
# If the signs differ then max returns the operand with the
# positive sign and min returns the operand with the negative sign
#
# If the signs are the same then the exponent is used to select
# the result. This is exactly the ordering used in compare_total.
c = self.compare_total(other)
if c == -1:
ans = other
else:
ans = self
return ans._fix(context)
def min(self, other, context=None):
"""Returns the smaller value.
Like min(self, other) except if one is not a number, returns
NaN (and signals if one is sNaN). Also rounds.
"""
other = _convert_other(other, raiseit=True)
if context is None:
context = getcontext()
if self._is_special or other._is_special:
# If one operand is a quiet NaN and the other is number, then the
# number is always returned
sn = self._isnan()
on = other._isnan()
if sn or on:
if on == 1 and sn != 2:
return self._fix_nan(context)
if sn == 1 and on != 2:
return other._fix_nan(context)
return self._check_nans(other, context)
c = self.__cmp__(other)
if c == 0:
c = self.compare_total(other)
if c == -1:
ans = self
else:
ans = other
return ans._fix(context)
def _isinteger(self):
"""Returns whether self is an integer"""
if self._is_special:
return False
if self._exp >= 0:
return True
rest = self._int[self._exp:]
return rest == '0'*len(rest)
def _iseven(self):
"""Returns True if self is even. Assumes self is an integer."""
if not self or self._exp > 0:
return True
return self._int[-1+self._exp] in '02468'
def adjusted(self):
"""Return the adjusted exponent of self"""
try:
return self._exp + len(self._int) - 1
# If NaN or Infinity, self._exp is string
except TypeError:
return 0
def canonical(self, context=None):
"""Returns the same Decimal object.
As we do not have different encodings for the same number, the
received object already is in its canonical form.
"""
return self
def compare_signal(self, other, context=None):
"""Compares self to the other operand numerically.
It's pretty much like compare(), but all NaNs signal, with signaling
NaNs taking precedence over quiet NaNs.
"""
if context is None:
context = getcontext()
self_is_nan = self._isnan()
other_is_nan = other._isnan()
if self_is_nan == 2:
return context._raise_error(InvalidOperation, 'sNaN',
1, self)
if other_is_nan == 2:
return context._raise_error(InvalidOperation, 'sNaN',
1, other)
if self_is_nan:
return context._raise_error(InvalidOperation, 'NaN in compare_signal',
1, self)
if other_is_nan:
return context._raise_error(InvalidOperation, 'NaN in compare_signal',
1, other)
return self.compare(other, context=context)
def compare_total(self, other):
"""Compares self to other using the abstract representations.
This is not like the standard compare, which use their numerical
value. Note that a total ordering is defined for all possible abstract
representations.
"""
# if one is negative and the other is positive, it's easy
if self._sign and not other._sign:
return Dec_n1
if not self._sign and other._sign:
return Dec_p1
sign = self._sign
# let's handle both NaN types
self_nan = self._isnan()
other_nan = other._isnan()
if self_nan or other_nan:
if self_nan == other_nan:
if self._int < other._int:
if sign:
return Dec_p1
else:
return Dec_n1
if self._int > other._int:
if sign:
return Dec_n1
else:
return Dec_p1
return Dec_0
if sign:
if self_nan == 1:
return Dec_n1
if other_nan == 1:
return Dec_p1
if self_nan == 2:
return Dec_n1
if other_nan == 2:
return Dec_p1
else:
if self_nan == 1:
return Dec_p1
if other_nan == 1:
return Dec_n1
if self_nan == 2:
return Dec_p1
if other_nan == 2:
return Dec_n1
if self < other:
return Dec_n1
if self > other:
return Dec_p1
if self._exp < other._exp:
if sign:
return Dec_p1
else:
return Dec_n1
if self._exp > other._exp:
if sign:
return Dec_n1
else:
return Dec_p1
return Dec_0
def compare_total_mag(self, other):
"""Compares self to other using abstract repr., ignoring sign.
Like compare_total, but with operand's sign ignored and assumed to be 0.
"""
s = self.copy_abs()
o = other.copy_abs()
return s.compare_total(o)
def copy_abs(self):
"""Returns a copy with the sign set to 0. """
return _dec_from_triple(0, self._int, self._exp, self._is_special)
def copy_negate(self):
"""Returns a copy with the sign inverted."""
if self._sign:
return _dec_from_triple(0, self._int, self._exp, self._is_special)
else:
return _dec_from_triple(1, self._int, self._exp, self._is_special)
def copy_sign(self, other):
"""Returns self with the sign of other."""
return _dec_from_triple(other._sign, self._int,
self._exp, self._is_special)
def exp(self, context=None):
"""Returns e ** self."""
if context is None:
context = getcontext()
# exp(NaN) = NaN
ans = self._check_nans(context=context)
if ans:
return ans
# exp(-Infinity) = 0
if self._isinfinity() == -1:
return Dec_0
# exp(0) = 1
if not self:
return Dec_p1
# exp(Infinity) = Infinity
if self._isinfinity() == 1:
return Decimal(self)
# the result is now guaranteed to be inexact (the true
# mathematical result is transcendental). There's no need to
# raise Rounded and Inexact here---they'll always be raised as
# a result of the call to _fix.
p = context.prec
adj = self.adjusted()
# we only need to do any computation for quite a small range
# of adjusted exponents---for example, -29 <= adj <= 10 for
# the default context. For smaller exponent the result is
# indistinguishable from 1 at the given precision, while for
# larger exponent the result either overflows or underflows.
if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
# overflow
ans = _dec_from_triple(0, '1', context.Emax+1)
elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
# underflow to 0
ans = _dec_from_triple(0, '1', context.Etiny()-1)
elif self._sign == 0 and adj < -p:
# p+1 digits; final round will raise correct flags
ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
elif self._sign == 1 and adj < -p-1:
# p+1 digits; final round will raise correct flags
ans = _dec_from_triple(0, '9'*(p+1), -p-1)
# general case
else:
op = _WorkRep(self)
c, e = op.int, op.exp
if op.sign == 1:
c = -c
# compute correctly rounded result: increase precision by
# 3 digits at a time until we get an unambiguously
# roundable result
extra = 3
while True:
coeff, exp = _dexp(c, e, p+extra)
if coeff % (5*10**(len(str(coeff))-p-1)):
break
extra += 3
ans = _dec_from_triple(0, str(coeff), exp)
# at this stage, ans should round correctly with *any*
# rounding mode, not just with ROUND_HALF_EVEN
context = context._shallow_copy()
rounding = context._set_rounding(ROUND_HALF_EVEN)
ans = ans._fix(context)
context.rounding = rounding
return ans
def is_canonical(self):
"""Return True if self is canonical; otherwise return False.
Currently, the encoding of a Decimal instance is always
canonical, so this method returns True for any Decimal.
"""
return True
def is_finite(self):
"""Return True if self is finite; otherwise return False.
A Decimal instance is considered finite if it is neither
infinite nor a NaN.
"""
return not self._is_special
def is_infinite(self):
"""Return True if self is infinite; otherwise return False."""
return self._exp == 'F'
def is_nan(self):
"""Return True if self is a qNaN or sNaN; otherwise return False."""
return self._exp in ('n', 'N')
def is_normal(self, context=None):
"""Return True if self is a normal number; otherwise return False."""
if self._is_special or not self:
return False
if context is None:
context = getcontext()
return context.Emin <= self.adjusted() <= context.Emax
def is_qnan(self):
"""Return True if self is a quiet NaN; otherwise return False."""
return self._exp == 'n'
def is_signed(self):
"""Return True if self is negative; otherwise return False."""
return self._sign == 1
def is_snan(self):
"""Return True if self is a signaling NaN; otherwise return False."""
return self._exp == 'N'
def is_subnormal(self, context=None):
"""Return True if self is subnormal; otherwise return False."""
if self._is_special or not self:
return False
if context is None:
context = getcontext()
return self.adjusted() < context.Emin
def is_zero(self):
"""Return True if self is a zero; otherwise return False."""
return not self._is_special and self._int == '0'
def _ln_exp_bound(self):
"""Compute a lower bound for the adjusted exponent of self.ln().
In other words, compute r such that self.ln() >= 10**r. Assumes
that self is finite and positive and that self != 1.
"""
# for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
adj = self._exp + len(self._int) - 1
if adj >= 1:
# argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
return len(str(adj*23//10)) - 1
if adj <= -2:
# argument <= 0.1
return len(str((-1-adj)*23//10)) - 1
op = _WorkRep(self)
c, e = op.int, op.exp
if adj == 0:
# 1 < self < 10
num = str(c-10**-e)
den = str(c)
return len(num) - len(den) - (num < den)
# adj == -1, 0.1 <= self < 1
return e + len(str(10**-e - c)) - 1
def ln(self, context=None):
"""Returns the natural (base e) logarithm of self."""
if context is None:
context = getcontext()
# ln(NaN) = NaN
ans = self._check_nans(context=context)
if ans:
return ans
# ln(0.0) == -Infinity
if not self:
return negInf
# ln(Infinity) = Infinity
if self._isinfinity() == 1:
return Inf
# ln(1.0) == 0.0
if self == Dec_p1:
return Dec_0
# ln(negative) raises InvalidOperation
if self._sign == 1:
return context._raise_error(InvalidOperation,
'ln of a negative value')
# result is irrational, so necessarily inexact
op = _WorkRep(self)
c, e = op.int, op.exp
p = context.prec
# correctly rounded result: repeatedly increase precision by 3
# until we get an unambiguously roundable result
places = p - self._ln_exp_bound() + 2 # at least p+3 places
while True:
coeff = _dlog(c, e, places)
# assert len(str(abs(coeff)))-p >= 1
if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
break
places += 3
ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
context = context._shallow_copy()
rounding = context._set_rounding(ROUND_HALF_EVEN)
ans = ans._fix(context)
context.rounding = rounding
return ans
def _log10_exp_bound(self):
"""Compute a lower bound for the adjusted exponent of self.log10().
In other words, find r such that self.log10() >= 10**r.
Assumes that self is finite and positive and that self != 1.
"""
# For x >= 10 or x < 0.1 we only need a bound on the integer
# part of log10(self), and this comes directly from the
# exponent of x. For 0.1 <= x <= 10 we use the inequalities
# 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
# (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
adj = self._exp + len(self._int) - 1
if adj >= 1:
# self >= 10
return len(str(adj))-1
if adj <= -2:
# self < 0.1
return len(str(-1-adj))-1
op = _WorkRep(self)
c, e = op.int, op.exp
if adj == 0:
# 1 < self < 10
num = str(c-10**-e)
den = str(231*c)
return len(num) - len(den) - (num < den) + 2
# adj == -1, 0.1 <= self < 1
num = str(10**-e-c)
return len(num) + e - (num < "231") - 1
def log10(self, context=None):
"""Returns the base 10 logarithm of self."""
if context is None:
context = getcontext()
# log10(NaN) = NaN
ans = self._check_nans(context=context)
if ans:
return ans
# log10(0.0) == -Infinity
if not self:
return negInf
# log10(Infinity) = Infinity
if self._isinfinity() == 1:
return Inf
# log10(negative or -Infinity) raises InvalidOperation
if self._sign == 1:
return context._raise_error(InvalidOperation,
'log10 of a negative value')
# log10(10**n) = n
if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
# answer may need rounding
ans = Decimal(self._exp + len(self._int) - 1)
else:
# result is irrational, so necessarily inexact
op = _WorkRep(self)
c, e = op.int, op.exp
p = context.prec
# correctly rounded result: repeatedly increase precision
# until result is unambiguously roundable
places = p-self._log10_exp_bound()+2
while True:
coeff = _dlog10(c, e, places)
# assert len(str(abs(coeff)))-p >= 1
if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
break
places += 3
ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
context = context._shallow_copy()
rounding = context._set_rounding(ROUND_HALF_EVEN)
ans = ans._fix(context)
context.rounding = rounding
return ans
def logb(self, context=None):
""" Returns the exponent of the magnitude of self's MSD.
The result is the integer which is the exponent of the magnitude
of the most significant digit of self (as though it were truncated
to a single digit while maintaining the value of that digit and
without limiting the resulting exponent).
"""
# logb(NaN) = NaN
ans = self._check_nans(context=context)
if ans:
return ans
if context is None:
context = getcontext()
# logb(+/-Inf) = +Inf
if self._isinfinity():
return Inf
# logb(0) = -Inf, DivisionByZero
if not self:
return context._raise_error(DivisionByZero, 'logb(0)', 1)
# otherwise, simply return the adjusted exponent of self, as a
# Decimal. Note that no attempt is made to fit the result
# into the current context.
return Decimal(self.adjusted())
def _islogical(self):
"""Return True if self is a logical operand.
For being logical, it must be a finite numbers with a sign of 0,
an exponent of 0, and a coefficient whose digits must all be
either 0 or 1.
"""
if self._sign != 0 or self._exp != 0:
return False
for dig in self._int:
if dig not in '01':
return False
return True
def _fill_logical(self, context, opa, opb):
dif = context.prec - len(opa)
if dif > 0:
opa = '0'*dif + opa
elif dif < 0:
opa = opa[-context.prec:]
dif = context.prec - len(opb)
if dif > 0:
opb = '0'*dif + opb
elif dif < 0:
opb = opb[-context.prec:]
return opa, opb
def logical_and(self, other, context=None):
"""Applies an 'and' operation between self and other's digits."""
if context is None:
context = getcontext()
if not self._islogical() or not other._islogical():
return context._raise_error(InvalidOperation)
# fill to context.prec
(opa, opb) = self._fill_logical(context, self._int, other._int)
# make the operation, and clean starting zeroes
result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
return _dec_from_triple(0, result.lstrip('0') or '0', 0)
def logical_invert(self, context=None):
"""Invert all its digits."""
if context is None:
context = getcontext()
return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
context)
def logical_or(self, other, context=None):
"""Applies an 'or' operation between self and other's digits."""
if context is None:
context = getcontext()
if not self._islogical() or not other._islogical():
return context._raise_error(InvalidOperation)
# fill to context.prec
(opa, opb) = self._fill_logical(context, self._int, other._int)
# make the operation, and clean starting zeroes
result = "".join(str(int(a)|int(b)) for a,b in zip(opa,opb))
return _dec_from_triple(0, result.lstrip('0') or '0', 0)
def logical_xor(self, other, context=None):
"""Applies an 'xor' operation between self and other's digits."""
if context is None:
context = getcontext()
if not self._islogical() or not other._islogical():
return context._raise_error(InvalidOperation)
# fill to context.prec
(opa, opb) = self._fill_logical(context, self._int, other._int)
# make the operation, and clean starting zeroes
result = "".join(str(int(a)^int(b)) for a,b in zip(opa,opb))
return _dec_from_triple(0, result.lstrip('0') or '0', 0)
def max_mag(self, other, context=None):
"""Compares the values numerically with their sign ignored."""
other = _convert_other(other, raiseit=True)
if context is None:
context = getcontext()
if self._is_special or other._is_special:
# If one operand is a quiet NaN and the other is number, then the
# number is always returned
sn = self._isnan()
on = other._isnan()
if sn or on:
if on == 1 and sn != 2:
return self._fix_nan(context)
if sn == 1 and on != 2:
return other._fix_nan(context)
return self._check_nans(other, context)
c = self.copy_abs().__cmp__(other.copy_abs())
if c == 0:
c = self.compare_total(other)
if c == -1:
ans = other
else:
ans = self
return ans._fix(context)
def min_mag(self, other, context=None):
"""Compares the values numerically with their sign ignored."""
other = _convert_other(other, raiseit=True)
if context is None:
context = getcontext()
if self._is_special or other._is_special:
# If one operand is a quiet NaN and the other is number, then the
# number is always returned
sn = self._isnan()
on = other._isnan()
if sn or on:
if on == 1 and sn != 2:
return self._fix_nan(context)
if sn == 1 and on != 2:
return other._fix_nan(context)
return self._check_nans(other, context)
c = self.copy_abs().__cmp__(other.copy_abs())
if c == 0:
c = self.compare_total(other)
if c == -1:
ans = self
else:
ans = other
return ans._fix(context)
def next_minus(self, context=None):
"""Returns the largest representable number smaller than itself."""
if context is None:
context = getcontext()
ans = self._check_nans(context=context)
if ans:
return ans
if self._isinfinity() == -1:
return negInf
if self._isinfinity() == 1:
return _dec_from_triple(0, '9'*context.prec, context.Etop())
context = context.copy()
context._set_rounding(ROUND_FLOOR)
context._ignore_all_flags()
new_self = self._fix(context)
if new_self != self:
return new_self
return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
context)
def next_plus(self, context=None):
"""Returns the smallest representable number larger than itself."""
if context is None:
context = getcontext()
ans = self._check_nans(context=context)
if ans:
return ans
if self._isinfinity() == 1:
return Inf
if self._isinfinity() == -1:
return _dec_from_triple(1, '9'*context.prec, context.Etop())
context = context.copy()
context._set_rounding(ROUND_CEILING)
context._ignore_all_flags()
new_self = self._fix(context)
if new_self != self:
return new_self
return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
context)
def next_toward(self, other, context=None):
"""Returns the number closest to self, in the direction towards other.
The result is the closest representable number to self
(excluding self) that is in the direction towards other,
unless both have the same value. If the two operands are
numerically equal, then the result is a copy of self with the
sign set to be the same as the sign of other.
"""
other = _convert_other(other, raiseit=True)
if context is None:
context = getcontext()
ans = self._check_nans(other, context)
if ans:
return ans
comparison = self.__cmp__(other)
if comparison == 0:
return self.copy_sign(other)
if comparison == -1:
ans = self.next_plus(context)
else: # comparison == 1
ans = self.next_minus(context)
# decide which flags to raise using value of ans
if ans._isinfinity():
context._raise_error(Overflow,
'Infinite result from next_toward',
ans._sign)
context._raise_error(Rounded)
context._raise_error(Inexact)
elif ans.adjusted() < context.Emin:
context._raise_error(Underflow)
context._raise_error(Subnormal)
context._raise_error(Rounded)
context._raise_error(Inexact)
# if precision == 1 then we don't raise Clamped for a
# result 0E-Etiny.
if not ans:
context._raise_error(Clamped)
return ans
def number_class(self, context=None):
"""Returns an indication of the class of self.
The class is one of the following strings:
-sNaN
-NaN
-Infinity
-Normal
-Subnormal
-Zero
+Zero
+Subnormal
+Normal
+Infinity
"""
if self.is_snan():
return "sNaN"
if self.is_qnan():
return "NaN"
inf = self._isinfinity()
if inf == 1:
return "+Infinity"
if inf == -1:
return "-Infinity"
if self.is_zero():
if self._sign:
return "-Zero"
else:
return "+Zero"
if context is None:
context = getcontext()
if self.is_subnormal(context=context):
if self._sign:
return "-Subnormal"
else:
return "+Subnormal"
# just a normal, regular, boring number, :)
if self._sign:
return "-Normal"
else:
return "+Normal"
def radix(self):
"""Just returns 10, as this is Decimal, :)"""
return Decimal(10)
def rotate(self, other, context=None):
"""Returns a rotated copy of self, value-of-other times."""
if context is None:
context = getcontext()
ans = self._check_nans(other, context)
if ans:
return ans
if other._exp != 0:
return context._raise_error(InvalidOperation)
if not (-context.prec <= int(other) <= context.prec):
return context._raise_error(InvalidOperation)
if self._isinfinity():
return Decimal(self)
# get values, pad if necessary
torot = int(other)
rotdig = self._int
topad = context.prec - len(rotdig)
if topad:
rotdig = '0'*topad + rotdig
# let's rotate!
rotated = rotdig[torot:] + rotdig[:torot]
return _dec_from_triple(self._sign,
rotated.lstrip('0') or '0', self._exp)
def scaleb (self, other, context=None):
"""Returns self operand after adding the second value to its exp."""
if context is None:
context = getcontext()
ans = self._check_nans(other, context)
if ans:
return ans
if other._exp != 0:
return context._raise_error(InvalidOperation)
liminf = -2 * (context.Emax + context.prec)
limsup = 2 * (context.Emax + context.prec)
if not (liminf <= int(other) <= limsup):
return context._raise_error(InvalidOperation)
if self._isinfinity():
return Decimal(self)
d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
d = d._fix(context)
return d
def shift(self, other, context=None):
"""Returns a shifted copy of self, value-of-other times."""
if context is None:
context = getcontext()
ans = self._check_nans(other, context)
if ans:
return ans
if other._exp != 0:
return context._raise_error(InvalidOperation)
if not (-context.prec <= int(other) <= context.prec):
return context._raise_error(InvalidOperation)
if self._isinfinity():
return Decimal(self)
# get values, pad if necessary
torot = int(other)
if not torot:
return Decimal(self)
rotdig = self._int
topad = context.prec - len(rotdig)
if topad:
rotdig = '0'*topad + rotdig
# let's shift!
if torot < 0:
rotated = rotdig[:torot]
else:
rotated = rotdig + '0'*torot
rotated = rotated[-context.prec:]
return _dec_from_triple(self._sign,
rotated.lstrip('0') or '0', self._exp)
# Support for pickling, copy, and deepcopy
def __reduce__(self):
return (self.__class__, (str(self),))
def __copy__(self):
if type(self) == Decimal:
return self # I'm immutable; therefore I am my own clone
return self.__class__(str(self))
def __deepcopy__(self, memo):
if type(self) == Decimal:
return self # My components are also immutable
return self.__class__(str(self))
def _dec_from_triple(sign, coefficient, exponent, special=False):
"""Create a decimal instance directly, without any validation,
normalization (e.g. removal of leading zeros) or argument
conversion.
This function is for *internal use only*.
"""
self = object.__new__(Decimal)
self._sign = sign
self._int = coefficient
self._exp = exponent
self._is_special = special
return self
##### Context class #######################################################
# get rounding method function:
rounding_functions = [name for name in Decimal.__dict__.keys()
if name.startswith('_round_')]
for name in rounding_functions:
# name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
globalname = name[1:].upper()
val = globals()[globalname]
Decimal._pick_rounding_function[val] = name
del name, val, globalname, rounding_functions
class _ContextManager(object):
"""Context manager class to support localcontext().
Sets a copy of the supplied context in __enter__() and restores
the previous decimal context in __exit__()
"""
def __init__(self, new_context):
self.new_context = new_context.copy()
def __enter__(self):
self.saved_context = getcontext()
setcontext(self.new_context)
return self.new_context
def __exit__(self, t, v, tb):
setcontext(self.saved_context)
class Context(object):
"""Contains the context for a Decimal instance.
Contains:
prec - precision (for use in rounding, division, square roots..)
rounding - rounding type (how you round)
traps - If traps[exception] = 1, then the exception is
raised when it is caused. Otherwise, a value is
substituted in.
flags - When an exception is caused, flags[exception] is incremented.
(Whether or not the trap_enabler is set)
Should be reset by user of Decimal instance.
Emin - Minimum exponent
Emax - Maximum exponent
capitals - If 1, 1*10^1 is printed as 1E+1.
If 0, printed as 1e1
_clamp - If 1, change exponents if too high (Default 0)
"""
def __init__(self, prec=None, rounding=None,
traps=None, flags=None,
Emin=None, Emax=None,
capitals=None, _clamp=0,
_ignored_flags=None):
if flags is None:
flags = []
if _ignored_flags is None:
_ignored_flags = []
if not isinstance(flags, dict):
flags = dict([(s,s in flags) for s in _signals])
del s
if traps is not None and not isinstance(traps, dict):
traps = dict([(s,s in traps) for s in _signals])
del s
for name, val in locals().items():
if val is None:
setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
else:
setattr(self, name, val)
del self.self
def __repr__(self):
"""Show the current context."""
s = []
s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
% vars(self))
names = [f.__name__ for f, v in self.flags.items() if v]
s.append('flags=[' + ', '.join(names) + ']')
names = [t.__name__ for t, v in self.traps.items() if v]
s.append('traps=[' + ', '.join(names) + ']')
return ', '.join(s) + ')'
def clear_flags(self):
"""Reset all flags to zero"""
for flag in self.flags:
self.flags[flag] = 0
def _shallow_copy(self):
"""Returns a shallow copy from self."""
nc = Context(self.prec, self.rounding, self.traps,
self.flags, self.Emin, self.Emax,
self.capitals, self._clamp, self._ignored_flags)
return nc
def copy(self):
"""Returns a deep copy from self."""
nc = Context(self.prec, self.rounding, self.traps.copy(),
self.flags.copy(), self.Emin, self.Emax,
self.capitals, self._clamp, self._ignored_flags)
return nc
__copy__ = copy
def _raise_error(self, condition, explanation = None, *args):
"""Handles an error
If the flag is in _ignored_flags, returns the default response.
Otherwise, it increments the flag, then, if the corresponding
trap_enabler is set, it reaises the exception. Otherwise, it returns
the default value after incrementing the flag.
"""
error = _condition_map.get(condition, condition)
if error in self._ignored_flags:
# Don't touch the flag
return error().handle(self, *args)
self.flags[error] += 1
if not self.traps[error]:
# The errors define how to handle themselves.
return condition().handle(self, *args)
# Errors should only be risked on copies of the context
# self._ignored_flags = []
raise error, explanation
def _ignore_all_flags(self):
"""Ignore all flags, if they are raised"""
return self._ignore_flags(*_signals)
def _ignore_flags(self, *flags):
"""Ignore the flags, if they are raised"""
# Do not mutate-- This way, copies of a context leave the original
# alone.
self._ignored_flags = (self._ignored_flags + list(flags))
return list(flags)
def _regard_flags(self, *flags):
"""Stop ignoring the flags, if they are raised"""
if flags and isinstance(flags[0], (tuple,list)):
flags = flags[0]
for flag in flags:
self._ignored_flags.remove(flag)
def __hash__(self):
"""A Context cannot be hashed."""
# We inherit object.__hash__, so we must deny this explicitly
raise TypeError("Cannot hash a Context.")
def Etiny(self):
"""Returns Etiny (= Emin - prec + 1)"""
return int(self.Emin - self.prec + 1)
def Etop(self):
"""Returns maximum exponent (= Emax - prec + 1)"""
return int(self.Emax - self.prec + 1)
def _set_rounding(self, type):
"""Sets the rounding type.
Sets the rounding type, and returns the current (previous)
rounding type. Often used like:
context = context.copy()
# so you don't change the calling context
# if an error occurs in the middle.
rounding = context._set_rounding(ROUND_UP)
val = self.__sub__(other, context=context)
context._set_rounding(rounding)
This will make it round up for that operation.
"""
rounding = self.rounding
self.rounding= type
return rounding
def create_decimal(self, num='0'):
"""Creates a new Decimal instance but using self as context."""
d = Decimal(num, context=self)
if d._isnan() and len(d._int) > self.prec - self._clamp:
return self._raise_error(ConversionSyntax,
"diagnostic info too long in NaN")
return d._fix(self)
# Methods
def abs(self, a):
"""Returns the absolute value of the operand.
If the operand is negative, the result is the same as using the minus
operation on the operand. Otherwise, the result is the same as using
the plus operation on the operand.
>>> ExtendedContext.abs(Decimal('2.1'))
Decimal("2.1")
>>> ExtendedContext.abs(Decimal('-100'))
Decimal("100")
>>> ExtendedContext.abs(Decimal('101.5'))
Decimal("101.5")
>>> ExtendedContext.abs(Decimal('-101.5'))
Decimal("101.5")
"""
return a.__abs__(context=self)
def add(self, a, b):
"""Return the sum of the two operands.
>>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
Decimal("19.00")
>>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
Decimal("1.02E+4")
"""
return a.__add__(b, context=self)
def _apply(self, a):
return str(a._fix(self))
def canonical(self, a):
"""Returns the same Decimal object.
As we do not have different encodings for the same number, the
received object already is in its canonical form.
>>> ExtendedContext.canonical(Decimal('2.50'))
Decimal("2.50")
"""
return a.canonical(context=self)
def compare(self, a, b):
"""Compares values numerically.
If the signs of the operands differ, a value representing each operand
('-1' if the operand is less than zero, '0' if the operand is zero or
negative zero, or '1' if the operand is greater than zero) is used in
place of that operand for the comparison instead of the actual
operand.
The comparison is then effected by subtracting the second operand from
the first and then returning a value according to the result of the
subtraction: '-1' if the result is less than zero, '0' if the result is
zero or negative zero, or '1' if the result is greater than zero.
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
Decimal("-1")
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
Decimal("0")
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
Decimal("0")
>>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
Decimal("1")
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
Decimal("1")
>>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
Decimal("-1")
"""
return a.compare(b, context=self)
def compare_signal(self, a, b):
"""Compares the values of the two operands numerically.
It's pretty much like compare(), but all NaNs signal, with signaling
NaNs taking precedence over quiet NaNs.
>>> c = ExtendedContext
>>> c.compare_signal(Decimal('2.1'), Decimal('3'))
Decimal("-1")
>>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
Decimal("0")
>>> c.flags[InvalidOperation] = 0
>>> print c.flags[InvalidOperation]
0
>>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
Decimal("NaN")
>>> print c.flags[InvalidOperation]
1
>>> c.flags[InvalidOperation] = 0
>>> print c.flags[InvalidOperation]
0
>>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
Decimal("NaN")
>>> print c.flags[InvalidOperation]
1
"""
return a.compare_signal(b, context=self)
def compare_total(self, a, b):
"""Compares two operands using their abstract representation.
This is not like the standard compare, which use their numerical
value. Note that a total ordering is defined for all possible abstract
representations.
>>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
Decimal("-1")
>>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
Decimal("-1")
>>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
Decimal("-1")
>>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
Decimal("0")
>>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
Decimal("1")
>>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
Decimal("-1")
"""
return a.compare_total(b)
def compare_total_mag(self, a, b):
"""Compares two operands using their abstract representation ignoring sign.
Like compare_total, but with operand's sign ignored and assumed to be 0.
"""
return a.compare_total_mag(b)
def copy_abs(self, a):
"""Returns a copy of the operand with the sign set to 0.
>>> ExtendedContext.copy_abs(Decimal('2.1'))
Decimal("2.1")
>>> ExtendedContext.copy_abs(Decimal('-100'))
Decimal("100")
"""
return a.copy_abs()
def copy_decimal(self, a):
"""Returns a copy of the decimal objet.
>>> ExtendedContext.copy_decimal(Decimal('2.1'))
Decimal("2.1")
>>> ExtendedContext.copy_decimal(Decimal('-1.00'))
Decimal("-1.00")
"""
return Decimal(a)
def copy_negate(self, a):
"""Returns a copy of the operand with the sign inverted.
>>> ExtendedContext.copy_negate(Decimal('101.5'))
Decimal("-101.5")
>>> ExtendedContext.copy_negate(Decimal('-101.5'))
Decimal("101.5")
"""
return a.copy_negate()
def copy_sign(self, a, b):
"""Copies the second operand's sign to the first one.
In detail, it returns a copy of the first operand with the sign
equal to the sign of the second operand.
>>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
Decimal("1.50")
>>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
Decimal("1.50")
>>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
Decimal("-1.50")
>>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
Decimal("-1.50")
"""
return a.copy_sign(b)
def divide(self, a, b):
"""Decimal division in a specified context.
>>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
Decimal("0.333333333")
>>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
Decimal("0.666666667")
>>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
Decimal("2.5")
>>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
Decimal("0.1")
>>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
Decimal("1")
>>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
Decimal("4.00")
>>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
Decimal("1.20")
>>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
Decimal("10")
>>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
Decimal("1000")
>>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
Decimal("1.20E+6")
"""
return a.__div__(b, context=self)
def divide_int(self, a, b):
"""Divides two numbers and returns the integer part of the result.
>>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
Decimal("0")
>>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
Decimal("3")
>>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
Decimal("3")
"""
return a.__floordiv__(b, context=self)
def divmod(self, a, b):
return a.__divmod__(b, context=self)
def exp(self, a):
"""Returns e ** a.
>>> c = ExtendedContext.copy()
>>> c.Emin = -999
>>> c.Emax = 999
>>> c.exp(Decimal('-Infinity'))
Decimal("0")
>>> c.exp(Decimal('-1'))
Decimal("0.367879441")
>>> c.exp(Decimal('0'))
Decimal("1")
>>> c.exp(Decimal('1'))
Decimal("2.71828183")
>>> c.exp(Decimal('0.693147181'))
Decimal("2.00000000")
>>> c.exp(Decimal('+Infinity'))
Decimal("Infinity")
"""
return a.exp(context=self)
def fma(self, a, b, c):
"""Returns a multiplied by b, plus c.
The first two operands are multiplied together, using multiply,
the third operand is then added to the result of that
multiplication, using add, all with only one final rounding.
>>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
Decimal("22")
>>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
Decimal("-8")
>>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
Decimal("1.38435736E+12")
"""
return a.fma(b, c, context=self)
def is_canonical(self, a):
"""Return True if the operand is canonical; otherwise return False.
Currently, the encoding of a Decimal instance is always
canonical, so this method returns True for any Decimal.
>>> ExtendedContext.is_canonical(Decimal('2.50'))
True
"""
return a.is_canonical()
def is_finite(self, a):
"""Return True if the operand is finite; otherwise return False.
A Decimal instance is considered finite if it is neither
infinite nor a NaN.
>>> ExtendedContext.is_finite(Decimal('2.50'))
True
>>> ExtendedContext.is_finite(Decimal('-0.3'))
True
>>> ExtendedContext.is_finite(Decimal('0'))
True
>>> ExtendedContext.is_finite(Decimal('Inf'))
False
>>> ExtendedContext.is_finite(Decimal('NaN'))
False
"""
return a.is_finite()
def is_infinite(self, a):
"""Return True if the operand is infinite; otherwise return False.
>>> ExtendedContext.is_infinite(Decimal('2.50'))
False
>>> ExtendedContext.is_infinite(Decimal('-Inf'))
True
>>> ExtendedContext.is_infinite(Decimal('NaN'))
False
"""
return a.is_infinite()
def is_nan(self, a):
"""Return True if the operand is a qNaN or sNaN;
otherwise return False.
>>> ExtendedContext.is_nan(Decimal('2.50'))
False
>>> ExtendedContext.is_nan(Decimal('NaN'))
True
>>> ExtendedContext.is_nan(Decimal('-sNaN'))
True
"""
return a.is_nan()
def is_normal(self, a):
"""Return True if the operand is a normal number;
otherwise return False.
>>> c = ExtendedContext.copy()
>>> c.Emin = -999
>>> c.Emax = 999
>>> c.is_normal(Decimal('2.50'))
True
>>> c.is_normal(Decimal('0.1E-999'))
False
>>> c.is_normal(Decimal('0.00'))
False
>>> c.is_normal(Decimal('-Inf'))
False
>>> c.is_normal(Decimal('NaN'))
False
"""
return a.is_normal(context=self)
def is_qnan(self, a):
"""Return True if the operand is a quiet NaN; otherwise return False.
>>> ExtendedContext.is_qnan(Decimal('2.50'))
False
>>> ExtendedContext.is_qnan(Decimal('NaN'))
True
>>> ExtendedContext.is_qnan(Decimal('sNaN'))
False
"""
return a.is_qnan()
def is_signed(self, a):
"""Return True if the operand is negative; otherwise return False.
>>> ExtendedContext.is_signed(Decimal('2.50'))
False
>>> ExtendedContext.is_signed(Decimal('-12'))
True
>>> ExtendedContext.is_signed(Decimal('-0'))
True
"""
return a.is_signed()
def is_snan(self, a):
"""Return True if the operand is a signaling NaN;
otherwise return False.
>>> ExtendedContext.is_snan(Decimal('2.50'))
False
>>> ExtendedContext.is_snan(Decimal('NaN'))
False
>>> ExtendedContext.is_snan(Decimal('sNaN'))
True
"""
return a.is_snan()
def is_subnormal(self, a):
"""Return True if the operand is subnormal; otherwise return False.
>>> c = ExtendedContext.copy()
>>> c.Emin = -999
>>> c.Emax = 999
>>> c.is_subnormal(Decimal('2.50'))
False
>>> c.is_subnormal(Decimal('0.1E-999'))
True
>>> c.is_subnormal(Decimal('0.00'))
False
>>> c.is_subnormal(Decimal('-Inf'))
False
>>> c.is_subnormal(Decimal('NaN'))
False
"""
return a.is_subnormal(context=self)
def is_zero(self, a):
"""Return True if the operand is a zero; otherwise return False.
>>> ExtendedContext.is_zero(Decimal('0'))
True
>>> ExtendedContext.is_zero(Decimal('2.50'))
False
>>> ExtendedContext.is_zero(Decimal('-0E+2'))
True
"""
return a.is_zero()
def ln(self, a):
"""Returns the natural (base e) logarithm of the operand.
>>> c = ExtendedContext.copy()
>>> c.Emin = -999
>>> c.Emax = 999
>>> c.ln(Decimal('0'))
Decimal("-Infinity")
>>> c.ln(Decimal('1.000'))
Decimal("0")
>>> c.ln(Decimal('2.71828183'))
Decimal("1.00000000")
>>> c.ln(Decimal('10'))
Decimal("2.30258509")
>>> c.ln(Decimal('+Infinity'))
Decimal("Infinity")
"""
return a.ln(context=self)
def log10(self, a):
"""Returns the base 10 logarithm of the operand.
>>> c = ExtendedContext.copy()
>>> c.Emin = -999
>>> c.Emax = 999
>>> c.log10(Decimal('0'))
Decimal("-Infinity")
>>> c.log10(Decimal('0.001'))
Decimal("-3")
>>> c.log10(Decimal('1.000'))
Decimal("0")
>>> c.log10(Decimal('2'))
Decimal("0.301029996")
>>> c.log10(Decimal('10'))
Decimal("1")
>>> c.log10(Decimal('70'))
Decimal("1.84509804")
>>> c.log10(Decimal('+Infinity'))
Decimal("Infinity")
"""
return a.log10(context=self)
def logb(self, a):
""" Returns the exponent of the magnitude of the operand's MSD.
The result is the integer which is the exponent of the magnitude
of the most significant digit of the operand (as though the
operand were truncated to a single digit while maintaining the
value of that digit and without limiting the resulting exponent).
>>> ExtendedContext.logb(Decimal('250'))
Decimal("2")
>>> ExtendedContext.logb(Decimal('2.50'))
Decimal("0")
>>> ExtendedContext.logb(Decimal('0.03'))
Decimal("-2")
>>> ExtendedContext.logb(Decimal('0'))
Decimal("-Infinity")
"""
return a.logb(context=self)
def logical_and(self, a, b):
"""Applies the logical operation 'and' between each operand's digits.
The operands must be both logical numbers.
>>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
Decimal("0")
>>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
Decimal("0")
>>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
Decimal("0")
>>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
Decimal("1")
>>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
Decimal("1000")
>>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
Decimal("10")
"""
return a.logical_and(b, context=self)
def logical_invert(self, a):
"""Invert all the digits in the operand.
The operand must be a logical number.
>>> ExtendedContext.logical_invert(Decimal('0'))
Decimal("111111111")
>>> ExtendedContext.logical_invert(Decimal('1'))
Decimal("111111110")
>>> ExtendedContext.logical_invert(Decimal('111111111'))
Decimal("0")
>>> ExtendedContext.logical_invert(Decimal('101010101'))
Decimal("10101010")
"""
return a.logical_invert(context=self)
def logical_or(self, a, b):
"""Applies the logical operation 'or' between each operand's digits.
The operands must be both logical numbers.
>>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
Decimal("0")
>>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
Decimal("1")
>>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
Decimal("1")
>>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
Decimal("1")
>>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
Decimal("1110")
>>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
Decimal("1110")
"""
return a.logical_or(b, context=self)
def logical_xor(self, a, b):
"""Applies the logical operation 'xor' between each operand's digits.
The operands must be both logical numbers.
>>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
Decimal("0")
>>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
Decimal("1")
>>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
Decimal("1")
>>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
Decimal("0")
>>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
Decimal("110")
>>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
Decimal("1101")
"""
return a.logical_xor(b, context=self)
def max(self, a,b):
"""max compares two values numerically and returns the maximum.
If either operand is a NaN then the general rules apply.
Otherwise, the operands are compared as as though by the compare
operation. If they are numerically equal then the left-hand operand
is chosen as the result. Otherwise the maximum (closer to positive
infinity) of the two operands is chosen as the result.
>>> ExtendedContext.max(Decimal('3'), Decimal('2'))
Decimal("3")
>>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
Decimal("3")
>>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
Decimal("1")
>>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
Decimal("7")
"""
return a.max(b, context=self)
def max_mag(self, a, b):
"""Compares the values numerically with their sign ignored."""
return a.max_mag(b, context=self)
def min(self, a,b):
"""min compares two values numerically and returns the minimum.
If either operand is a NaN then the general rules apply.
Otherwise, the operands are compared as as though by the compare
operation. If they are numerically equal then the left-hand operand
is chosen as the result. Otherwise the minimum (closer to negative
infinity) of the two operands is chosen as the result.
>>> ExtendedContext.min(Decimal('3'), Decimal('2'))
Decimal("2")
>>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
Decimal("-10")
>>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
Decimal("1.0")
>>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
Decimal("7")
"""
return a.min(b, context=self)
def min_mag(self, a, b):
"""Compares the values numerically with their sign ignored."""
return a.min_mag(b, context=self)
def minus(self, a):
"""Minus corresponds to unary prefix minus in Python.
The operation is evaluated using the same rules as subtract; the
operation minus(a) is calculated as subtract('0', a) where the '0'
has the same exponent as the operand.
>>> ExtendedContext.minus(Decimal('1.3'))
Decimal("-1.3")
>>> ExtendedContext.minus(Decimal('-1.3'))
Decimal("1.3")
"""
return a.__neg__(context=self)
def multiply(self, a, b):
"""multiply multiplies two operands.
If either operand is a special value then the general rules apply.
Otherwise, the operands are multiplied together ('long multiplication'),
resulting in a number which may be as long as the sum of the lengths
of the two operands.
>>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
Decimal("3.60")
>>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
Decimal("21")
>>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
Decimal("0.72")
>>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
Decimal("-0.0")
>>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
Decimal("4.28135971E+11")
"""
return a.__mul__(b, context=self)
def next_minus(self, a):
"""Returns the largest representable number smaller than a.
>>> c = ExtendedContext.copy()
>>> c.Emin = -999
>>> c.Emax = 999
>>> ExtendedContext.next_minus(Decimal('1'))
Decimal("0.999999999")
>>> c.next_minus(Decimal('1E-1007'))
Decimal("0E-1007")
>>> ExtendedContext.next_minus(Decimal('-1.00000003'))
Decimal("-1.00000004")
>>> c.next_minus(Decimal('Infinity'))
Decimal("9.99999999E+999")
"""
return a.next_minus(context=self)
def next_plus(self, a):
"""Returns the smallest representable number larger than a.
>>> c = ExtendedContext.copy()
>>> c.Emin = -999
>>> c.Emax = 999
>>> ExtendedContext.next_plus(Decimal('1'))
Decimal("1.00000001")
>>> c.next_plus(Decimal('-1E-1007'))
Decimal("-0E-1007")
>>> ExtendedContext.next_plus(Decimal('-1.00000003'))
Decimal("-1.00000002")
>>> c.next_plus(Decimal('-Infinity'))
Decimal("-9.99999999E+999")
"""
return a.next_plus(context=self)
def next_toward(self, a, b):
"""Returns the number closest to a, in direction towards b.
The result is the closest representable number from the first
operand (but not the first operand) that is in the direction
towards the second operand, unless the operands have the same
value.
>>> c = ExtendedContext.copy()
>>> c.Emin = -999
>>> c.Emax = 999
>>> c.next_toward(Decimal('1'), Decimal('2'))
Decimal("1.00000001")
>>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
Decimal("-0E-1007")
>>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
Decimal("-1.00000002")
>>> c.next_toward(Decimal('1'), Decimal('0'))
Decimal("0.999999999")
>>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
Decimal("0E-1007")
>>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
Decimal("-1.00000004")
>>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
Decimal("-0.00")
"""
return a.next_toward(b, context=self)
def normalize(self, a):
"""normalize reduces an operand to its simplest form.
Essentially a plus operation with all trailing zeros removed from the
result.
>>> ExtendedContext.normalize(Decimal('2.1'))
Decimal("2.1")
>>> ExtendedContext.normalize(Decimal('-2.0'))
Decimal("-2")
>>> ExtendedContext.normalize(Decimal('1.200'))
Decimal("1.2")
>>> ExtendedContext.normalize(Decimal('-120'))
Decimal("-1.2E+2")
>>> ExtendedContext.normalize(Decimal('120.00'))
Decimal("1.2E+2")
>>> ExtendedContext.normalize(Decimal('0.00'))
Decimal("0")
"""
return a.normalize(context=self)
def number_class(self, a):
"""Returns an indication of the class of the operand.
The class is one of the following strings:
-sNaN
-NaN
-Infinity
-Normal
-Subnormal
-Zero
+Zero
+Subnormal
+Normal
+Infinity
>>> c = Context(ExtendedContext)
>>> c.Emin = -999
>>> c.Emax = 999
>>> c.number_class(Decimal('Infinity'))
'+Infinity'
>>> c.number_class(Decimal('1E-10'))
'+Normal'
>>> c.number_class(Decimal('2.50'))
'+Normal'
>>> c.number_class(Decimal('0.1E-999'))
'+Subnormal'
>>> c.number_class(Decimal('0'))
'+Zero'
>>> c.number_class(Decimal('-0'))
'-Zero'
>>> c.number_class(Decimal('-0.1E-999'))
'-Subnormal'
>>> c.number_class(Decimal('-1E-10'))
'-Normal'
>>> c.number_class(Decimal('-2.50'))
'-Normal'
>>> c.number_class(Decimal('-Infinity'))
'-Infinity'
>>> c.number_class(Decimal('NaN'))
'NaN'
>>> c.number_class(Decimal('-NaN'))
'NaN'
>>> c.number_class(Decimal('sNaN'))
'sNaN'
"""
return a.number_class(context=self)
def plus(self, a):
"""Plus corresponds to unary prefix plus in Python.
The operation is evaluated using the same rules as add; the
operation plus(a) is calculated as add('0', a) where the '0'
has the same exponent as the operand.
>>> ExtendedContext.plus(Decimal('1.3'))
Decimal("1.3")
>>> ExtendedContext.plus(Decimal('-1.3'))
Decimal("-1.3")
"""
return a.__pos__(context=self)
def power(self, a, b, modulo=None):
"""Raises a to the power of b, to modulo if given.
With two arguments, compute a**b. If a is negative then b
must be integral. The result will be inexact unless b is
integral and the result is finite and can be expressed exactly
in 'precision' digits.
With three arguments, compute (a**b) % modulo. For the
three argument form, the following restrictions on the
arguments hold:
- all three arguments must be integral
- b must be nonnegative
- at least one of a or b must be nonzero
- modulo must be nonzero and have at most 'precision' digits
The result of pow(a, b, modulo) is identical to the result
that would be obtained by computing (a**b) % modulo with
unbounded precision, but is computed more efficiently. It is
always exact.
>>> c = ExtendedContext.copy()
>>> c.Emin = -999
>>> c.Emax = 999
>>> c.power(Decimal('2'), Decimal('3'))
Decimal("8")
>>> c.power(Decimal('-2'), Decimal('3'))
Decimal("-8")
>>> c.power(Decimal('2'), Decimal('-3'))
Decimal("0.125")
>>> c.power(Decimal('1.7'), Decimal('8'))
Decimal("69.7575744")
>>> c.power(Decimal('10'), Decimal('0.301029996'))
Decimal("2.00000000")
>>> c.power(Decimal('Infinity'), Decimal('-1'))
Decimal("0")
>>> c.power(Decimal('Infinity'), Decimal('0'))
Decimal("1")
>>> c.power(Decimal('Infinity'), Decimal('1'))
Decimal("Infinity")
>>> c.power(Decimal('-Infinity'), Decimal('-1'))
Decimal("-0")
>>> c.power(Decimal('-Infinity'), Decimal('0'))
Decimal("1")
>>> c.power(Decimal('-Infinity'), Decimal('1'))
Decimal("-Infinity")
>>> c.power(Decimal('-Infinity'), Decimal('2'))
Decimal("Infinity")
>>> c.power(Decimal('0'), Decimal('0'))
Decimal("NaN")
>>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
Decimal("11")
>>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
Decimal("-11")
>>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
Decimal("1")
>>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
Decimal("11")
>>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
Decimal("11729830")
>>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
Decimal("-0")
>>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
Decimal("1")
"""
return a.__pow__(b, modulo, context=self)
def quantize(self, a, b):
"""Returns a value equal to 'a' (rounded), having the exponent of 'b'.
The coefficient of the result is derived from that of the left-hand
operand. It may be rounded using the current rounding setting (if the
exponent is being increased), multiplied by a positive power of ten (if
the exponent is being decreased), or is unchanged (if the exponent is
already equal to that of the right-hand operand).
Unlike other operations, if the length of the coefficient after the
quantize operation would be greater than precision then an Invalid
operation condition is raised. This guarantees that, unless there is
an error condition, the exponent of the result of a quantize is always
equal to that of the right-hand operand.
Also unlike other operations, quantize will never raise Underflow, even
if the result is subnormal and inexact.
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
Decimal("2.170")
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
Decimal("2.17")
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
Decimal("2.2")
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
Decimal("2")
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
Decimal("0E+1")
>>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
Decimal("-Infinity")
>>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
Decimal("NaN")
>>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
Decimal("-0")
>>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
Decimal("-0E+5")
>>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
Decimal("NaN")
>>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
Decimal("NaN")
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
Decimal("217.0")
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
Decimal("217")
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
Decimal("2.2E+2")
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
Decimal("2E+2")
"""
return a.quantize(b, context=self)
def radix(self):
"""Just returns 10, as this is Decimal, :)
>>> ExtendedContext.radix()
Decimal("10")
"""
return Decimal(10)
def remainder(self, a, b):
"""Returns the remainder from integer division.
The result is the residue of the dividend after the operation of
calculating integer division as described for divide-integer, rounded
to precision digits if necessary. The sign of the result, if
non-zero, is the same as that of the original dividend.
This operation will fail under the same conditions as integer division
(that is, if integer division on the same two operands would fail, the
remainder cannot be calculated).
>>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
Decimal("2.1")
>>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
Decimal("1")
>>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
Decimal("-1")
>>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
Decimal("0.2")
>>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
Decimal("0.1")
>>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
Decimal("1.0")
"""
return a.__mod__(b, context=self)
def remainder_near(self, a, b):
"""Returns to be "a - b * n", where n is the integer nearest the exact
value of "x / b" (if two integers are equally near then the even one
is chosen). If the result is equal to 0 then its sign will be the
sign of a.
This operation will fail under the same conditions as integer division
(that is, if integer division on the same two operands would fail, the
remainder cannot be calculated).
>>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
Decimal("-0.9")
>>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
Decimal("-2")
>>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
Decimal("1")
>>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
Decimal("-1")
>>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
Decimal("0.2")
>>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
Decimal("0.1")
>>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
Decimal("-0.3")
"""
return a.remainder_near(b, context=self)
def rotate(self, a, b):
"""Returns a rotated copy of a, b times.
The coefficient of the result is a rotated copy of the digits in
the coefficient of the first operand. The number of places of
rotation is taken from the absolute value of the second operand,
with the rotation being to the left if the second operand is
positive or to the right otherwise.
>>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
Decimal("400000003")
>>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
Decimal("12")
>>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
Decimal("891234567")
>>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
Decimal("123456789")
>>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
Decimal("345678912")
"""
return a.rotate(b, context=self)
def same_quantum(self, a, b):
"""Returns True if the two operands have the same exponent.
The result is never affected by either the sign or the coefficient of
either operand.
>>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
False
>>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
True
>>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
False
>>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
True
"""
return a.same_quantum(b)
def scaleb (self, a, b):
"""Returns the first operand after adding the second value its exp.
>>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
Decimal("0.0750")
>>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
Decimal("7.50")
>>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
Decimal("7.50E+3")
"""
return a.scaleb (b, context=self)
def shift(self, a, b):
"""Returns a shifted copy of a, b times.
The coefficient of the result is a shifted copy of the digits
in the coefficient of the first operand. The number of places
to shift is taken from the absolute value of the second operand,
with the shift being to the left if the second operand is
positive or to the right otherwise. Digits shifted into the
coefficient are zeros.
>>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
Decimal("400000000")
>>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
Decimal("0")
>>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
Decimal("1234567")
>>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
Decimal("123456789")
>>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
Decimal("345678900")
"""
return a.shift(b, context=self)
def sqrt(self, a):
"""Square root of a non-negative number to context precision.
If the result must be inexact, it is rounded using the round-half-even
algorithm.
>>> ExtendedContext.sqrt(Decimal('0'))
Decimal("0")
>>> ExtendedContext.sqrt(Decimal('-0'))
Decimal("-0")
>>> ExtendedContext.sqrt(Decimal('0.39'))
Decimal("0.624499800")
>>> ExtendedContext.sqrt(Decimal('100'))
Decimal("10")
>>> ExtendedContext.sqrt(Decimal('1'))
Decimal("1")
>>> ExtendedContext.sqrt(Decimal('1.0'))
Decimal("1.0")
>>> ExtendedContext.sqrt(Decimal('1.00'))
Decimal("1.0")
>>> ExtendedContext.sqrt(Decimal('7'))
Decimal("2.64575131")
>>> ExtendedContext.sqrt(Decimal('10'))
Decimal("3.16227766")
>>> ExtendedContext.prec
9
"""
return a.sqrt(context=self)
def subtract(self, a, b):
"""Return the difference between the two operands.
>>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
Decimal("0.23")
>>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
Decimal("0.00")
>>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
Decimal("-0.77")
"""
return a.__sub__(b, context=self)
def to_eng_string(self, a):
"""Converts a number to a string, using scientific notation.
The operation is not affected by the context.
"""
return a.to_eng_string(context=self)
def to_sci_string(self, a):
"""Converts a number to a string, using scientific notation.
The operation is not affected by the context.
"""
return a.__str__(context=self)
def to_integral_exact(self, a):
"""Rounds to an integer.
When the operand has a negative exponent, the result is the same
as using the quantize() operation using the given operand as the
left-hand-operand, 1E+0 as the right-hand-operand, and the precision
of the operand as the precision setting; Inexact and Rounded flags
are allowed in this operation. The rounding mode is taken from the
context.
>>> ExtendedContext.to_integral_exact(Decimal('2.1'))
Decimal("2")
>>> ExtendedContext.to_integral_exact(Decimal('100'))
Decimal("100")
>>> ExtendedContext.to_integral_exact(Decimal('100.0'))
Decimal("100")
>>> ExtendedContext.to_integral_exact(Decimal('101.5'))
Decimal("102")
>>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
Decimal("-102")
>>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
Decimal("1.0E+6")
>>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
Decimal("7.89E+77")
>>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
Decimal("-Infinity")
"""
return a.to_integral_exact(context=self)
def to_integral_value(self, a):
"""Rounds to an integer.
When the operand has a negative exponent, the result is the same
as using the quantize() operation using the given operand as the
left-hand-operand, 1E+0 as the right-hand-operand, and the precision
of the operand as the precision setting, except that no flags will
be set. The rounding mode is taken from the context.
>>> ExtendedContext.to_integral_value(Decimal('2.1'))
Decimal("2")
>>> ExtendedContext.to_integral_value(Decimal('100'))
Decimal("100")
>>> ExtendedContext.to_integral_value(Decimal('100.0'))
Decimal("100")
>>> ExtendedContext.to_integral_value(Decimal('101.5'))
Decimal("102")
>>> ExtendedContext.to_integral_value(Decimal('-101.5'))
Decimal("-102")
>>> ExtendedContext.to_integral_value(Decimal('10E+5'))
Decimal("1.0E+6")
>>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
Decimal("7.89E+77")
>>> ExtendedContext.to_integral_value(Decimal('-Inf'))
Decimal("-Infinity")
"""
return a.to_integral_value(context=self)
# the method name changed, but we provide also the old one, for compatibility
to_integral = to_integral_value
class _WorkRep(object):
__slots__ = ('sign','int','exp')
# sign: 0 or 1
# int: int or long
# exp: None, int, or string
def __init__(self, value=None):
if value is None:
self.sign = None
self.int = 0
self.exp = None
elif isinstance(value, Decimal):
self.sign = value._sign
self.int = int(value._int)
self.exp = value._exp
else:
# assert isinstance(value, tuple)
self.sign = value[0]
self.int = value[1]
self.exp = value[2]
def __repr__(self):
return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
__str__ = __repr__
def _normalize(op1, op2, prec = 0):
"""Normalizes op1, op2 to have the same exp and length of coefficient.
Done during addition.
"""
if op1.exp < op2.exp:
tmp = op2
other = op1
else:
tmp = op1
other = op2
# Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
# Then adding 10**exp to tmp has the same effect (after rounding)
# as adding any positive quantity smaller than 10**exp; similarly
# for subtraction. So if other is smaller than 10**exp we replace
# it with 10**exp. This avoids tmp.exp - other.exp getting too large.
tmp_len = len(str(tmp.int))
other_len = len(str(other.int))
exp = tmp.exp + min(-1, tmp_len - prec - 2)
if other_len + other.exp - 1 < exp:
other.int = 1
other.exp = exp
tmp.int *= 10 ** (tmp.exp - other.exp)
tmp.exp = other.exp
return op1, op2
##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
# This function from Tim Peters was taken from here:
# http://mail.python.org/pipermail/python-list/1999-July/007758.html
# The correction being in the function definition is for speed, and
# the whole function is not resolved with math.log because of avoiding
# the use of floats.
def _nbits(n, correction = {
'0': 4, '1': 3, '2': 2, '3': 2,
'4': 1, '5': 1, '6': 1, '7': 1,
'8': 0, '9': 0, 'a': 0, 'b': 0,
'c': 0, 'd': 0, 'e': 0, 'f': 0}):
"""Number of bits in binary representation of the positive integer n,
or 0 if n == 0.
"""
if n < 0:
raise ValueError("The argument to _nbits should be nonnegative.")
hex_n = "%x" % n
return 4*len(hex_n) - correction[hex_n[0]]
def _sqrt_nearest(n, a):
"""Closest integer to the square root of the positive integer n. a is
an initial approximation to the square root. Any positive integer
will do for a, but the closer a is to the square root of n the
faster convergence will be.
"""
if n <= 0 or a <= 0:
raise ValueError("Both arguments to _sqrt_nearest should be positive.")
b=0
while a != b:
b, a = a, a--n//a>>1
return a
def _rshift_nearest(x, shift):
"""Given an integer x and a nonnegative integer shift, return closest
integer to x / 2**shift; use round-to-even in case of a tie.
"""
b, q = 1L << shift, x >> shift
return q + (2*(x & (b-1)) + (q&1) > b)
def _div_nearest(a, b):
"""Closest integer to a/b, a and b positive integers; rounds to even
in the case of a tie.
"""
q, r = divmod(a, b)
return q + (2*r + (q&1) > b)
def _ilog(x, M, L = 8):
"""Integer approximation to M*log(x/M), with absolute error boundable
in terms only of x/M.
Given positive integers x and M, return an integer approximation to
M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
between the approximation and the exact result is at most 22. For
L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
both cases these are upper bounds on the error; it will usually be
much smaller."""
# The basic algorithm is the following: let log1p be the function
# log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
# the reduction
#
# log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
#
# repeatedly until the argument to log1p is small (< 2**-L in
# absolute value). For small y we can use the Taylor series
# expansion
#
# log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
#
# truncating at T such that y**T is small enough. The whole
# computation is carried out in a form of fixed-point arithmetic,
# with a real number z being represented by an integer
# approximation to z*M. To avoid loss of precision, the y below
# is actually an integer approximation to 2**R*y*M, where R is the
# number of reductions performed so far.
y = x-M
# argument reduction; R = number of reductions performed
R = 0
while (R <= L and long(abs(y)) << L-R >= M or
R > L and abs(y) >> R-L >= M):
y = _div_nearest(long(M*y) << 1,
M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
R += 1
# Taylor series with T terms
T = -int(-10*len(str(M))//(3*L))
yshift = _rshift_nearest(y, R)
w = _div_nearest(M, T)
for k in xrange(T-1, 0, -1):
w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
return _div_nearest(w*y, M)
def _dlog10(c, e, p):
"""Given integers c, e and p with c > 0, p >= 0, compute an integer
approximation to 10**p * log10(c*10**e), with an absolute error of
at most 1. Assumes that c*10**e is not exactly 1."""
# increase precision by 2; compensate for this by dividing
# final result by 100
p += 2
# write c*10**e as d*10**f with either:
# f >= 0 and 1 <= d <= 10, or
# f <= 0 and 0.1 <= d <= 1.
# Thus for c*10**e close to 1, f = 0
l = len(str(c))
f = e+l - (e+l >= 1)
if p > 0:
M = 10**p
k = e+p-f
if k >= 0:
c *= 10**k
else:
c = _div_nearest(c, 10**-k)
log_d = _ilog(c, M) # error < 5 + 22 = 27
log_10 = _log10_digits(p) # error < 1
log_d = _div_nearest(log_d*M, log_10)
log_tenpower = f*M # exact
else:
log_d = 0 # error < 2.31
log_tenpower = div_nearest(f, 10**-p) # error < 0.5
return _div_nearest(log_tenpower+log_d, 100)
def _dlog(c, e, p):
"""Given integers c, e and p with c > 0, compute an integer
approximation to 10**p * log(c*10**e), with an absolute error of
at most 1. Assumes that c*10**e is not exactly 1."""
# Increase precision by 2. The precision increase is compensated
# for at the end with a division by 100.
p += 2
# rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
# or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
# as 10**p * log(d) + 10**p*f * log(10).
l = len(str(c))
f = e+l - (e+l >= 1)
# compute approximation to 10**p*log(d), with error < 27
if p > 0:
k = e+p-f
if k >= 0:
c *= 10**k
else:
c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
# _ilog magnifies existing error in c by a factor of at most 10
log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
else:
# p <= 0: just approximate the whole thing by 0; error < 2.31
log_d = 0
# compute approximation to f*10**p*log(10), with error < 11.
if f:
extra = len(str(abs(f)))-1
if p + extra >= 0:
# error in f * _log10_digits(p+extra) < |f| * 1 = |f|
# after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
else:
f_log_ten = 0
else:
f_log_ten = 0
# error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
return _div_nearest(f_log_ten + log_d, 100)
class _Log10Memoize(object):
"""Class to compute, store, and allow retrieval of, digits of the
constant log(10) = 2.302585.... This constant is needed by
Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
def __init__(self):
self.digits = "23025850929940456840179914546843642076011014886"
def getdigits(self, p):
"""Given an integer p >= 0, return floor(10**p)*log(10).
For example, self.getdigits(3) returns 2302.
"""
# digits are stored as a string, for quick conversion to
# integer in the case that we've already computed enough
# digits; the stored digits should always be correct
# (truncated, not rounded to nearest).
if p < 0:
raise ValueError("p should be nonnegative")
if p >= len(self.digits):
# compute p+3, p+6, p+9, ... digits; continue until at
# least one of the extra digits is nonzero
extra = 3
while True:
# compute p+extra digits, correct to within 1ulp
M = 10**(p+extra+2)
digits = str(_div_nearest(_ilog(10*M, M), 100))
if digits[-extra:] != '0'*extra:
break
extra += 3
# keep all reliable digits so far; remove trailing zeros
# and next nonzero digit
self.digits = digits.rstrip('0')[:-1]
return int(self.digits[:p+1])
_log10_digits = _Log10Memoize().getdigits
def _iexp(x, M, L=8):
"""Given integers x and M, M > 0, such that x/M is small in absolute
value, compute an integer approximation to M*exp(x/M). For 0 <=
x/M <= 2.4, the absolute error in the result is bounded by 60 (and
is usually much smaller)."""
# Algorithm: to compute exp(z) for a real number z, first divide z
# by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
# compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
# series
#
# expm1(x) = x + x**2/2! + x**3/3! + ...
#
# Now use the identity
#
# expm1(2x) = expm1(x)*(expm1(x)+2)
#
# R times to compute the sequence expm1(z/2**R),
# expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
# Find R such that x/2**R/M <= 2**-L
R = _nbits((long(x)<<L)//M)
# Taylor series. (2**L)**T > M
T = -int(-10*len(str(M))//(3*L))
y = _div_nearest(x, T)
Mshift = long(M)<<R
for i in xrange(T-1, 0, -1):
y = _div_nearest(x*(Mshift + y), Mshift * i)
# Expansion
for k in xrange(R-1, -1, -1):
Mshift = long(M)<<(k+2)
y = _div_nearest(y*(y+Mshift), Mshift)
return M+y
def _dexp(c, e, p):
"""Compute an approximation to exp(c*10**e), with p decimal places of
precision.
Returns integers d, f such that:
10**(p-1) <= d <= 10**p, and
(d-1)*10**f < exp(c*10**e) < (d+1)*10**f
In other words, d*10**f is an approximation to exp(c*10**e) with p
digits of precision, and with an error in d of at most 1. This is
almost, but not quite, the same as the error being < 1ulp: when d
= 10**(p-1) the error could be up to 10 ulp."""
# we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
p += 2
# compute log(10) with extra precision = adjusted exponent of c*10**e
extra = max(0, e + len(str(c)) - 1)
q = p + extra
# compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
# rounding down
shift = e+q
if shift >= 0:
cshift = c*10**shift
else:
cshift = c//10**-shift
quot, rem = divmod(cshift, _log10_digits(q))
# reduce remainder back to original precision
rem = _div_nearest(rem, 10**extra)
# error in result of _iexp < 120; error after division < 0.62
return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
def _dpower(xc, xe, yc, ye, p):
"""Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
10**(p-1) <= c <= 10**p, and
(c-1)*10**e < x**y < (c+1)*10**e
in other words, c*10**e is an approximation to x**y with p digits
of precision, and with an error in c of at most 1. (This is
almost, but not quite, the same as the error being < 1ulp: when c
== 10**(p-1) we can only guarantee error < 10ulp.)
We assume that: x is positive and not equal to 1, and y is nonzero.
"""
# Find b such that 10**(b-1) <= |y| <= 10**b
b = len(str(abs(yc))) + ye
# log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
lxc = _dlog(xc, xe, p+b+1)
# compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
shift = ye-b
if shift >= 0:
pc = lxc*yc*10**shift
else:
pc = _div_nearest(lxc*yc, 10**-shift)
if pc == 0:
# we prefer a result that isn't exactly 1; this makes it
# easier to compute a correctly rounded result in __pow__
if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
coeff, exp = 10**(p-1)+1, 1-p
else:
coeff, exp = 10**p-1, -p
else:
coeff, exp = _dexp(pc, -(p+1), p+1)
coeff = _div_nearest(coeff, 10)
exp += 1
return coeff, exp
def _log10_lb(c, correction = {
'1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
'6': 23, '7': 16, '8': 10, '9': 5}):
"""Compute a lower bound for 100*log10(c) for a positive integer c."""
if c <= 0:
raise ValueError("The argument to _log10_lb should be nonnegative.")
str_c = str(c)
return 100*len(str_c) - correction[str_c[0]]
##### Helper Functions ####################################################
def _convert_other(other, raiseit=False):
"""Convert other to Decimal.
Verifies that it's ok to use in an implicit construction.
"""
if isinstance(other, Decimal):
return other
if isinstance(other, (int, long)):
return Decimal(other)
if raiseit:
raise TypeError("Unable to convert %s to Decimal" % other)
return NotImplemented
##### Setup Specific Contexts ############################################
# The default context prototype used by Context()
# Is mutable, so that new contexts can have different default values
DefaultContext = Context(
prec=28, rounding=ROUND_HALF_EVEN,
traps=[DivisionByZero, Overflow, InvalidOperation],
flags=[],
Emax=999999999,
Emin=-999999999,
capitals=1
)
# Pre-made alternate contexts offered by the specification
# Don't change these; the user should be able to select these
# contexts and be able to reproduce results from other implementations
# of the spec.
BasicContext = Context(
prec=9, rounding=ROUND_HALF_UP,
traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
flags=[],
)
ExtendedContext = Context(
prec=9, rounding=ROUND_HALF_EVEN,
traps=[],
flags=[],
)
##### crud for parsing strings #############################################
import re
# Regular expression used for parsing numeric strings. Additional
# comments:
#
# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
# whitespace. But note that the specification disallows whitespace in
# a numeric string.
#
# 2. For finite numbers (not infinities and NaNs) the body of the
# number between the optional sign and the optional exponent must have
# at least one decimal digit, possibly after the decimal point. The
# lookahead expression '(?=\d|\.\d)' checks this.
#
# As the flag UNICODE is not enabled here, we're explicitly avoiding any
# other meaning for \d than the numbers [0-9].
import re
_parser = re.compile(r""" # A numeric string consists of:
# \s*
(?P<sign>[-+])? # an optional sign, followed by either...
(
(?=\d|\.\d) # ...a number (with at least one digit)
(?P<int>\d*) # consisting of a (possibly empty) integer part
(\.(?P<frac>\d*))? # followed by an optional fractional part
(E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
|
Inf(inity)? # ...an infinity, or...
|
(?P<signal>s)? # ...an (optionally signaling)
NaN # NaN
(?P<diag>\d*) # with (possibly empty) diagnostic information.
)
# \s*
$
""", re.VERBOSE | re.IGNORECASE).match
_all_zeros = re.compile('0*$').match
_exact_half = re.compile('50*$').match
del re
##### Useful Constants (internal use only) ################################
# Reusable defaults
Inf = Decimal('Inf')
negInf = Decimal('-Inf')
NaN = Decimal('NaN')
Dec_0 = Decimal(0)
Dec_p1 = Decimal(1)
Dec_n1 = Decimal(-1)
Dec_p2 = Decimal(2)
Dec_n2 = Decimal(-2)
# Infsign[sign] is infinity w/ that sign
Infsign = (Inf, negInf)
if __name__ == '__main__':
import doctest, sys
doctest.testmod(sys.modules[__name__])