1918 lines
52 KiB
C
1918 lines
52 KiB
C
|
|
/* Generic object operations; and implementation of None (NoObject) */
|
|
|
|
#include "Python.h"
|
|
#include "frameobject.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#ifdef Py_REF_DEBUG
|
|
Py_ssize_t _Py_RefTotal;
|
|
|
|
Py_ssize_t
|
|
_Py_GetRefTotal(void)
|
|
{
|
|
PyObject *o;
|
|
Py_ssize_t total = _Py_RefTotal;
|
|
/* ignore the references to the dummy object of the dicts and sets
|
|
because they are not reliable and not useful (now that the
|
|
hash table code is well-tested) */
|
|
o = _PyDict_Dummy();
|
|
if (o != NULL)
|
|
total -= o->ob_refcnt;
|
|
o = _PySet_Dummy();
|
|
if (o != NULL)
|
|
total -= o->ob_refcnt;
|
|
return total;
|
|
}
|
|
#endif /* Py_REF_DEBUG */
|
|
|
|
int Py_DivisionWarningFlag;
|
|
|
|
/* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
|
|
These are used by the individual routines for object creation.
|
|
Do not call them otherwise, they do not initialize the object! */
|
|
|
|
#ifdef Py_TRACE_REFS
|
|
/* Head of circular doubly-linked list of all objects. These are linked
|
|
* together via the _ob_prev and _ob_next members of a PyObject, which
|
|
* exist only in a Py_TRACE_REFS build.
|
|
*/
|
|
static PyObject refchain = {&refchain, &refchain};
|
|
|
|
/* Insert op at the front of the list of all objects. If force is true,
|
|
* op is added even if _ob_prev and _ob_next are non-NULL already. If
|
|
* force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
|
|
* force should be true if and only if op points to freshly allocated,
|
|
* uninitialized memory, or you've unlinked op from the list and are
|
|
* relinking it into the front.
|
|
* Note that objects are normally added to the list via _Py_NewReference,
|
|
* which is called by PyObject_Init. Not all objects are initialized that
|
|
* way, though; exceptions include statically allocated type objects, and
|
|
* statically allocated singletons (like Py_True and Py_None).
|
|
*/
|
|
void
|
|
_Py_AddToAllObjects(PyObject *op, int force)
|
|
{
|
|
#ifdef Py_DEBUG
|
|
if (!force) {
|
|
/* If it's initialized memory, op must be in or out of
|
|
* the list unambiguously.
|
|
*/
|
|
assert((op->_ob_prev == NULL) == (op->_ob_next == NULL));
|
|
}
|
|
#endif
|
|
if (force || op->_ob_prev == NULL) {
|
|
op->_ob_next = refchain._ob_next;
|
|
op->_ob_prev = &refchain;
|
|
refchain._ob_next->_ob_prev = op;
|
|
refchain._ob_next = op;
|
|
}
|
|
}
|
|
#endif /* Py_TRACE_REFS */
|
|
|
|
#ifdef COUNT_ALLOCS
|
|
static PyTypeObject *type_list;
|
|
/* All types are added to type_list, at least when
|
|
they get one object created. That makes them
|
|
immortal, which unfortunately contributes to
|
|
garbage itself. If unlist_types_without_objects
|
|
is set, they will be removed from the type_list
|
|
once the last object is deallocated. */
|
|
static int unlist_types_without_objects;
|
|
extern Py_ssize_t tuple_zero_allocs, fast_tuple_allocs;
|
|
extern Py_ssize_t quick_int_allocs, quick_neg_int_allocs;
|
|
extern Py_ssize_t null_strings, one_strings;
|
|
void
|
|
dump_counts(FILE* f)
|
|
{
|
|
PyTypeObject *tp;
|
|
|
|
for (tp = type_list; tp; tp = tp->tp_next)
|
|
fprintf(f, "%s alloc'd: %" PY_FORMAT_SIZE_T "d, "
|
|
"freed: %" PY_FORMAT_SIZE_T "d, "
|
|
"max in use: %" PY_FORMAT_SIZE_T "d\n",
|
|
tp->tp_name, tp->tp_allocs, tp->tp_frees,
|
|
tp->tp_maxalloc);
|
|
fprintf(f, "fast tuple allocs: %" PY_FORMAT_SIZE_T "d, "
|
|
"empty: %" PY_FORMAT_SIZE_T "d\n",
|
|
fast_tuple_allocs, tuple_zero_allocs);
|
|
fprintf(f, "fast int allocs: pos: %" PY_FORMAT_SIZE_T "d, "
|
|
"neg: %" PY_FORMAT_SIZE_T "d\n",
|
|
quick_int_allocs, quick_neg_int_allocs);
|
|
fprintf(f, "null strings: %" PY_FORMAT_SIZE_T "d, "
|
|
"1-strings: %" PY_FORMAT_SIZE_T "d\n",
|
|
null_strings, one_strings);
|
|
}
|
|
|
|
PyObject *
|
|
get_counts(void)
|
|
{
|
|
PyTypeObject *tp;
|
|
PyObject *result;
|
|
PyObject *v;
|
|
|
|
result = PyList_New(0);
|
|
if (result == NULL)
|
|
return NULL;
|
|
for (tp = type_list; tp; tp = tp->tp_next) {
|
|
v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs,
|
|
tp->tp_frees, tp->tp_maxalloc);
|
|
if (v == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
if (PyList_Append(result, v) < 0) {
|
|
Py_DECREF(v);
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(v);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void
|
|
inc_count(PyTypeObject *tp)
|
|
{
|
|
if (tp->tp_next == NULL && tp->tp_prev == NULL) {
|
|
/* first time; insert in linked list */
|
|
if (tp->tp_next != NULL) /* sanity check */
|
|
Py_FatalError("XXX inc_count sanity check");
|
|
if (type_list)
|
|
type_list->tp_prev = tp;
|
|
tp->tp_next = type_list;
|
|
/* Note that as of Python 2.2, heap-allocated type objects
|
|
* can go away, but this code requires that they stay alive
|
|
* until program exit. That's why we're careful with
|
|
* refcounts here. type_list gets a new reference to tp,
|
|
* while ownership of the reference type_list used to hold
|
|
* (if any) was transferred to tp->tp_next in the line above.
|
|
* tp is thus effectively immortal after this.
|
|
*/
|
|
Py_INCREF(tp);
|
|
type_list = tp;
|
|
#ifdef Py_TRACE_REFS
|
|
/* Also insert in the doubly-linked list of all objects,
|
|
* if not already there.
|
|
*/
|
|
_Py_AddToAllObjects((PyObject *)tp, 0);
|
|
#endif
|
|
}
|
|
tp->tp_allocs++;
|
|
if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc)
|
|
tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees;
|
|
}
|
|
|
|
void dec_count(PyTypeObject *tp)
|
|
{
|
|
tp->tp_frees++;
|
|
if (unlist_types_without_objects &&
|
|
tp->tp_allocs == tp->tp_frees) {
|
|
/* unlink the type from type_list */
|
|
if (tp->tp_prev)
|
|
tp->tp_prev->tp_next = tp->tp_next;
|
|
else
|
|
type_list = tp->tp_next;
|
|
if (tp->tp_next)
|
|
tp->tp_next->tp_prev = tp->tp_prev;
|
|
tp->tp_next = tp->tp_prev = NULL;
|
|
Py_DECREF(tp);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef Py_REF_DEBUG
|
|
/* Log a fatal error; doesn't return. */
|
|
void
|
|
_Py_NegativeRefcount(const char *fname, int lineno, PyObject *op)
|
|
{
|
|
char buf[300];
|
|
|
|
PyOS_snprintf(buf, sizeof(buf),
|
|
"%s:%i object at %p has negative ref count "
|
|
"%" PY_FORMAT_SIZE_T "d",
|
|
fname, lineno, op, op->ob_refcnt);
|
|
Py_FatalError(buf);
|
|
}
|
|
|
|
#endif /* Py_REF_DEBUG */
|
|
|
|
void
|
|
Py_IncRef(PyObject *o)
|
|
{
|
|
Py_XINCREF(o);
|
|
}
|
|
|
|
void
|
|
Py_DecRef(PyObject *o)
|
|
{
|
|
Py_XDECREF(o);
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_Init(PyObject *op, PyTypeObject *tp)
|
|
{
|
|
if (op == NULL)
|
|
return PyErr_NoMemory();
|
|
/* Any changes should be reflected in PyObject_INIT (objimpl.h) */
|
|
Py_TYPE(op) = tp;
|
|
_Py_NewReference(op);
|
|
return op;
|
|
}
|
|
|
|
PyVarObject *
|
|
PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size)
|
|
{
|
|
if (op == NULL)
|
|
return (PyVarObject *) PyErr_NoMemory();
|
|
/* Any changes should be reflected in PyObject_INIT_VAR */
|
|
op->ob_size = size;
|
|
Py_TYPE(op) = tp;
|
|
_Py_NewReference((PyObject *)op);
|
|
return op;
|
|
}
|
|
|
|
PyObject *
|
|
_PyObject_New(PyTypeObject *tp)
|
|
{
|
|
PyObject *op;
|
|
op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp));
|
|
if (op == NULL)
|
|
return PyErr_NoMemory();
|
|
return PyObject_INIT(op, tp);
|
|
}
|
|
|
|
PyVarObject *
|
|
_PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
|
|
{
|
|
PyVarObject *op;
|
|
const size_t size = _PyObject_VAR_SIZE(tp, nitems);
|
|
op = (PyVarObject *) PyObject_MALLOC(size);
|
|
if (op == NULL)
|
|
return (PyVarObject *)PyErr_NoMemory();
|
|
return PyObject_INIT_VAR(op, tp, nitems);
|
|
}
|
|
|
|
int
|
|
PyObject_Print(PyObject *op, FILE *fp, int flags)
|
|
{
|
|
int ret = 0;
|
|
if (PyErr_CheckSignals())
|
|
return -1;
|
|
#ifdef USE_STACKCHECK
|
|
if (PyOS_CheckStack()) {
|
|
PyErr_SetString(PyExc_MemoryError, "stack overflow");
|
|
return -1;
|
|
}
|
|
#endif
|
|
clearerr(fp); /* Clear any previous error condition */
|
|
if (op == NULL) {
|
|
Py_BEGIN_ALLOW_THREADS
|
|
fprintf(fp, "<nil>");
|
|
Py_END_ALLOW_THREADS
|
|
}
|
|
else {
|
|
if (op->ob_refcnt <= 0)
|
|
/* XXX(twouters) cast refcount to long until %zd is
|
|
universally available */
|
|
Py_BEGIN_ALLOW_THREADS
|
|
fprintf(fp, "<refcnt %ld at %p>",
|
|
(long)op->ob_refcnt, op);
|
|
Py_END_ALLOW_THREADS
|
|
else {
|
|
PyObject *s;
|
|
if (flags & Py_PRINT_RAW)
|
|
s = PyObject_Str(op);
|
|
else
|
|
s = PyObject_Repr(op);
|
|
if (s == NULL)
|
|
ret = -1;
|
|
else if (PyBytes_Check(s)) {
|
|
fwrite(PyBytes_AS_STRING(s), 1,
|
|
PyBytes_GET_SIZE(s), fp);
|
|
}
|
|
else if (PyUnicode_Check(s)) {
|
|
PyObject *t;
|
|
t = PyUnicode_EncodeUTF8(PyUnicode_AS_UNICODE(s),
|
|
PyUnicode_GET_SIZE(s),
|
|
"backslashreplace");
|
|
if (t == NULL)
|
|
ret = 0;
|
|
else {
|
|
fwrite(PyBytes_AS_STRING(t), 1,
|
|
PyBytes_GET_SIZE(t), fp);
|
|
Py_DECREF(t);
|
|
}
|
|
}
|
|
else {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"str() or repr() returned '%.100s'",
|
|
s->ob_type->tp_name);
|
|
ret = -1;
|
|
}
|
|
Py_XDECREF(s);
|
|
}
|
|
}
|
|
if (ret == 0) {
|
|
if (ferror(fp)) {
|
|
PyErr_SetFromErrno(PyExc_IOError);
|
|
clearerr(fp);
|
|
ret = -1;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* For debugging convenience. Set a breakpoint here and call it from your DLL */
|
|
void
|
|
_Py_BreakPoint(void)
|
|
{
|
|
}
|
|
|
|
|
|
/* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
|
|
void
|
|
_PyObject_Dump(PyObject* op)
|
|
{
|
|
if (op == NULL)
|
|
fprintf(stderr, "NULL\n");
|
|
else {
|
|
#ifdef WITH_THREAD
|
|
PyGILState_STATE gil;
|
|
#endif
|
|
fprintf(stderr, "object : ");
|
|
#ifdef WITH_THREAD
|
|
gil = PyGILState_Ensure();
|
|
#endif
|
|
(void)PyObject_Print(op, stderr, 0);
|
|
#ifdef WITH_THREAD
|
|
PyGILState_Release(gil);
|
|
#endif
|
|
/* XXX(twouters) cast refcount to long until %zd is
|
|
universally available */
|
|
fprintf(stderr, "\n"
|
|
"type : %s\n"
|
|
"refcount: %ld\n"
|
|
"address : %p\n",
|
|
Py_TYPE(op)==NULL ? "NULL" : Py_TYPE(op)->tp_name,
|
|
(long)op->ob_refcnt,
|
|
op);
|
|
}
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_Repr(PyObject *v)
|
|
{
|
|
PyObject *res;
|
|
if (PyErr_CheckSignals())
|
|
return NULL;
|
|
#ifdef USE_STACKCHECK
|
|
if (PyOS_CheckStack()) {
|
|
PyErr_SetString(PyExc_MemoryError, "stack overflow");
|
|
return NULL;
|
|
}
|
|
#endif
|
|
if (v == NULL)
|
|
return PyUnicode_FromString("<NULL>");
|
|
if (Py_TYPE(v)->tp_repr == NULL)
|
|
return PyUnicode_FromFormat("<%s object at %p>",
|
|
v->ob_type->tp_name, v);
|
|
res = (*v->ob_type->tp_repr)(v);
|
|
if (res != NULL && !PyUnicode_Check(res)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"__repr__ returned non-string (type %.200s)",
|
|
res->ob_type->tp_name);
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_Str(PyObject *v)
|
|
{
|
|
PyObject *res;
|
|
if (PyErr_CheckSignals())
|
|
return NULL;
|
|
#ifdef USE_STACKCHECK
|
|
if (PyOS_CheckStack()) {
|
|
PyErr_SetString(PyExc_MemoryError, "stack overflow");
|
|
return NULL;
|
|
}
|
|
#endif
|
|
if (v == NULL)
|
|
return PyUnicode_FromString("<NULL>");
|
|
if (PyUnicode_CheckExact(v)) {
|
|
Py_INCREF(v);
|
|
return v;
|
|
}
|
|
if (Py_TYPE(v)->tp_str == NULL)
|
|
return PyObject_Repr(v);
|
|
|
|
/* It is possible for a type to have a tp_str representation that loops
|
|
infinitely. */
|
|
if (Py_EnterRecursiveCall(" while getting the str of an object"))
|
|
return NULL;
|
|
res = (*Py_TYPE(v)->tp_str)(v);
|
|
Py_LeaveRecursiveCall();
|
|
if (res == NULL)
|
|
return NULL;
|
|
if (!PyUnicode_Check(res)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"__str__ returned non-string (type %.200s)",
|
|
Py_TYPE(res)->tp_name);
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_ASCII(PyObject *v)
|
|
{
|
|
PyObject *repr, *ascii, *res;
|
|
|
|
repr = PyObject_Repr(v);
|
|
if (repr == NULL)
|
|
return NULL;
|
|
|
|
/* repr is guaranteed to be a PyUnicode object by PyObject_Repr */
|
|
ascii = PyUnicode_EncodeASCII(
|
|
PyUnicode_AS_UNICODE(repr),
|
|
PyUnicode_GET_SIZE(repr),
|
|
"backslashreplace");
|
|
|
|
Py_DECREF(repr);
|
|
if (ascii == NULL)
|
|
return NULL;
|
|
|
|
res = PyUnicode_DecodeASCII(
|
|
PyBytes_AS_STRING(ascii),
|
|
PyBytes_GET_SIZE(ascii),
|
|
NULL);
|
|
|
|
Py_DECREF(ascii);
|
|
return res;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_Bytes(PyObject *v)
|
|
{
|
|
PyObject *result, *func;
|
|
static PyObject *bytesstring = NULL;
|
|
|
|
if (v == NULL)
|
|
return PyBytes_FromString("<NULL>");
|
|
|
|
if (PyBytes_CheckExact(v)) {
|
|
Py_INCREF(v);
|
|
return v;
|
|
}
|
|
|
|
func = _PyObject_LookupSpecial(v, "__bytes__", &bytesstring);
|
|
if (func != NULL) {
|
|
result = PyObject_CallFunctionObjArgs(func, NULL);
|
|
Py_DECREF(func);
|
|
if (result == NULL)
|
|
return NULL;
|
|
if (!PyBytes_Check(result)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"__bytes__ returned non-bytes (type %.200s)",
|
|
Py_TYPE(result)->tp_name);
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
return result;
|
|
}
|
|
else if (PyErr_Occurred())
|
|
return NULL;
|
|
return PyBytes_FromObject(v);
|
|
}
|
|
|
|
/* For Python 3.0.1 and later, the old three-way comparison has been
|
|
completely removed in favour of rich comparisons. PyObject_Compare() and
|
|
PyObject_Cmp() are gone, and the builtin cmp function no longer exists.
|
|
The old tp_compare slot has been renamed to tp_reserved, and should no
|
|
longer be used. Use tp_richcompare instead.
|
|
|
|
See (*) below for practical amendments.
|
|
|
|
tp_richcompare gets called with a first argument of the appropriate type
|
|
and a second object of an arbitrary type. We never do any kind of
|
|
coercion.
|
|
|
|
The tp_richcompare slot should return an object, as follows:
|
|
|
|
NULL if an exception occurred
|
|
NotImplemented if the requested comparison is not implemented
|
|
any other false value if the requested comparison is false
|
|
any other true value if the requested comparison is true
|
|
|
|
The PyObject_RichCompare[Bool]() wrappers raise TypeError when they get
|
|
NotImplemented.
|
|
|
|
(*) Practical amendments:
|
|
|
|
- If rich comparison returns NotImplemented, == and != are decided by
|
|
comparing the object pointer (i.e. falling back to the base object
|
|
implementation).
|
|
|
|
*/
|
|
|
|
/* Map rich comparison operators to their swapped version, e.g. LT <--> GT */
|
|
int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
|
|
|
|
static char *opstrings[] = {"<", "<=", "==", "!=", ">", ">="};
|
|
|
|
/* Perform a rich comparison, raising TypeError when the requested comparison
|
|
operator is not supported. */
|
|
static PyObject *
|
|
do_richcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
richcmpfunc f;
|
|
PyObject *res;
|
|
int checked_reverse_op = 0;
|
|
|
|
if (v->ob_type != w->ob_type &&
|
|
PyType_IsSubtype(w->ob_type, v->ob_type) &&
|
|
(f = w->ob_type->tp_richcompare) != NULL) {
|
|
checked_reverse_op = 1;
|
|
res = (*f)(w, v, _Py_SwappedOp[op]);
|
|
if (res != Py_NotImplemented)
|
|
return res;
|
|
Py_DECREF(res);
|
|
}
|
|
if ((f = v->ob_type->tp_richcompare) != NULL) {
|
|
res = (*f)(v, w, op);
|
|
if (res != Py_NotImplemented)
|
|
return res;
|
|
Py_DECREF(res);
|
|
}
|
|
if (!checked_reverse_op && (f = w->ob_type->tp_richcompare) != NULL) {
|
|
res = (*f)(w, v, _Py_SwappedOp[op]);
|
|
if (res != Py_NotImplemented)
|
|
return res;
|
|
Py_DECREF(res);
|
|
}
|
|
/* If neither object implements it, provide a sensible default
|
|
for == and !=, but raise an exception for ordering. */
|
|
switch (op) {
|
|
case Py_EQ:
|
|
res = (v == w) ? Py_True : Py_False;
|
|
break;
|
|
case Py_NE:
|
|
res = (v != w) ? Py_True : Py_False;
|
|
break;
|
|
default:
|
|
/* XXX Special-case None so it doesn't show as NoneType() */
|
|
PyErr_Format(PyExc_TypeError,
|
|
"unorderable types: %.100s() %s %.100s()",
|
|
v->ob_type->tp_name,
|
|
opstrings[op],
|
|
w->ob_type->tp_name);
|
|
return NULL;
|
|
}
|
|
Py_INCREF(res);
|
|
return res;
|
|
}
|
|
|
|
/* Perform a rich comparison with object result. This wraps do_richcompare()
|
|
with a check for NULL arguments and a recursion check. */
|
|
|
|
PyObject *
|
|
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *res;
|
|
|
|
assert(Py_LT <= op && op <= Py_GE);
|
|
if (v == NULL || w == NULL) {
|
|
if (!PyErr_Occurred())
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (Py_EnterRecursiveCall(" in comparison"))
|
|
return NULL;
|
|
res = do_richcompare(v, w, op);
|
|
Py_LeaveRecursiveCall();
|
|
return res;
|
|
}
|
|
|
|
/* Perform a rich comparison with integer result. This wraps
|
|
PyObject_RichCompare(), returning -1 for error, 0 for false, 1 for true. */
|
|
int
|
|
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *res;
|
|
int ok;
|
|
|
|
/* Quick result when objects are the same.
|
|
Guarantees that identity implies equality. */
|
|
if (v == w) {
|
|
if (op == Py_EQ)
|
|
return 1;
|
|
else if (op == Py_NE)
|
|
return 0;
|
|
}
|
|
|
|
res = PyObject_RichCompare(v, w, op);
|
|
if (res == NULL)
|
|
return -1;
|
|
if (PyBool_Check(res))
|
|
ok = (res == Py_True);
|
|
else
|
|
ok = PyObject_IsTrue(res);
|
|
Py_DECREF(res);
|
|
return ok;
|
|
}
|
|
|
|
/* Set of hash utility functions to help maintaining the invariant that
|
|
if a==b then hash(a)==hash(b)
|
|
|
|
All the utility functions (_Py_Hash*()) return "-1" to signify an error.
|
|
*/
|
|
|
|
/* For numeric types, the hash of a number x is based on the reduction
|
|
of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that
|
|
hash(x) == hash(y) whenever x and y are numerically equal, even if
|
|
x and y have different types.
|
|
|
|
A quick summary of the hashing strategy:
|
|
|
|
(1) First define the 'reduction of x modulo P' for any rational
|
|
number x; this is a standard extension of the usual notion of
|
|
reduction modulo P for integers. If x == p/q (written in lowest
|
|
terms), the reduction is interpreted as the reduction of p times
|
|
the inverse of the reduction of q, all modulo P; if q is exactly
|
|
divisible by P then define the reduction to be infinity. So we've
|
|
got a well-defined map
|
|
|
|
reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }.
|
|
|
|
(2) Now for a rational number x, define hash(x) by:
|
|
|
|
reduce(x) if x >= 0
|
|
-reduce(-x) if x < 0
|
|
|
|
If the result of the reduction is infinity (this is impossible for
|
|
integers, floats and Decimals) then use the predefined hash value
|
|
_PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead.
|
|
_PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the
|
|
hashes of float and Decimal infinities and nans.
|
|
|
|
A selling point for the above strategy is that it makes it possible
|
|
to compute hashes of decimal and binary floating-point numbers
|
|
efficiently, even if the exponent of the binary or decimal number
|
|
is large. The key point is that
|
|
|
|
reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS)
|
|
|
|
provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a
|
|
binary or decimal float is never infinity, since the denominator is a power
|
|
of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have,
|
|
for nonnegative x,
|
|
|
|
reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS
|
|
|
|
reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS
|
|
|
|
and reduce(10**e) can be computed efficiently by the usual modular
|
|
exponentiation algorithm. For reduce(2**e) it's even better: since
|
|
P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication
|
|
by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits.
|
|
|
|
*/
|
|
|
|
Py_hash_t
|
|
_Py_HashDouble(double v)
|
|
{
|
|
int e, sign;
|
|
double m;
|
|
Py_uhash_t x, y;
|
|
|
|
if (!Py_IS_FINITE(v)) {
|
|
if (Py_IS_INFINITY(v))
|
|
return v > 0 ? _PyHASH_INF : -_PyHASH_INF;
|
|
else
|
|
return _PyHASH_NAN;
|
|
}
|
|
|
|
m = frexp(v, &e);
|
|
|
|
sign = 1;
|
|
if (m < 0) {
|
|
sign = -1;
|
|
m = -m;
|
|
}
|
|
|
|
/* process 28 bits at a time; this should work well both for binary
|
|
and hexadecimal floating point. */
|
|
x = 0;
|
|
while (m) {
|
|
x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28);
|
|
m *= 268435456.0; /* 2**28 */
|
|
e -= 28;
|
|
y = (Py_uhash_t)m; /* pull out integer part */
|
|
m -= y;
|
|
x += y;
|
|
if (x >= _PyHASH_MODULUS)
|
|
x -= _PyHASH_MODULUS;
|
|
}
|
|
|
|
/* adjust for the exponent; first reduce it modulo _PyHASH_BITS */
|
|
e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS);
|
|
x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e);
|
|
|
|
x = x * sign;
|
|
if (x == (Py_uhash_t)-1)
|
|
x = (Py_uhash_t)-2;
|
|
return (Py_hash_t)x;
|
|
}
|
|
|
|
Py_hash_t
|
|
_Py_HashPointer(void *p)
|
|
{
|
|
Py_hash_t x;
|
|
size_t y = (size_t)p;
|
|
/* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid
|
|
excessive hash collisions for dicts and sets */
|
|
y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4));
|
|
x = (Py_hash_t)y;
|
|
if (x == -1)
|
|
x = -2;
|
|
return x;
|
|
}
|
|
|
|
Py_hash_t
|
|
PyObject_HashNotImplemented(PyObject *v)
|
|
{
|
|
PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'",
|
|
Py_TYPE(v)->tp_name);
|
|
return -1;
|
|
}
|
|
|
|
Py_hash_t
|
|
PyObject_Hash(PyObject *v)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(v);
|
|
if (tp->tp_hash != NULL)
|
|
return (*tp->tp_hash)(v);
|
|
/* To keep to the general practice that inheriting
|
|
* solely from object in C code should work without
|
|
* an explicit call to PyType_Ready, we implicitly call
|
|
* PyType_Ready here and then check the tp_hash slot again
|
|
*/
|
|
if (tp->tp_dict == NULL) {
|
|
if (PyType_Ready(tp) < 0)
|
|
return -1;
|
|
if (tp->tp_hash != NULL)
|
|
return (*tp->tp_hash)(v);
|
|
}
|
|
/* Otherwise, the object can't be hashed */
|
|
return PyObject_HashNotImplemented(v);
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_GetAttrString(PyObject *v, const char *name)
|
|
{
|
|
PyObject *w, *res;
|
|
|
|
if (Py_TYPE(v)->tp_getattr != NULL)
|
|
return (*Py_TYPE(v)->tp_getattr)(v, (char*)name);
|
|
w = PyUnicode_InternFromString(name);
|
|
if (w == NULL)
|
|
return NULL;
|
|
res = PyObject_GetAttr(v, w);
|
|
Py_XDECREF(w);
|
|
return res;
|
|
}
|
|
|
|
int
|
|
PyObject_HasAttrString(PyObject *v, const char *name)
|
|
{
|
|
PyObject *res = PyObject_GetAttrString(v, name);
|
|
if (res != NULL) {
|
|
Py_DECREF(res);
|
|
return 1;
|
|
}
|
|
PyErr_Clear();
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w)
|
|
{
|
|
PyObject *s;
|
|
int res;
|
|
|
|
if (Py_TYPE(v)->tp_setattr != NULL)
|
|
return (*Py_TYPE(v)->tp_setattr)(v, (char*)name, w);
|
|
s = PyUnicode_InternFromString(name);
|
|
if (s == NULL)
|
|
return -1;
|
|
res = PyObject_SetAttr(v, s, w);
|
|
Py_XDECREF(s);
|
|
return res;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_GetAttr(PyObject *v, PyObject *name)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(v);
|
|
|
|
if (!PyUnicode_Check(name)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"attribute name must be string, not '%.200s'",
|
|
name->ob_type->tp_name);
|
|
return NULL;
|
|
}
|
|
if (tp->tp_getattro != NULL)
|
|
return (*tp->tp_getattro)(v, name);
|
|
if (tp->tp_getattr != NULL) {
|
|
char *name_str = _PyUnicode_AsString(name);
|
|
if (name_str == NULL)
|
|
return NULL;
|
|
return (*tp->tp_getattr)(v, name_str);
|
|
}
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object has no attribute '%U'",
|
|
tp->tp_name, name);
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
PyObject_HasAttr(PyObject *v, PyObject *name)
|
|
{
|
|
PyObject *res = PyObject_GetAttr(v, name);
|
|
if (res != NULL) {
|
|
Py_DECREF(res);
|
|
return 1;
|
|
}
|
|
PyErr_Clear();
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(v);
|
|
int err;
|
|
|
|
if (!PyUnicode_Check(name)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"attribute name must be string, not '%.200s'",
|
|
name->ob_type->tp_name);
|
|
return -1;
|
|
}
|
|
Py_INCREF(name);
|
|
|
|
PyUnicode_InternInPlace(&name);
|
|
if (tp->tp_setattro != NULL) {
|
|
err = (*tp->tp_setattro)(v, name, value);
|
|
Py_DECREF(name);
|
|
return err;
|
|
}
|
|
if (tp->tp_setattr != NULL) {
|
|
char *name_str = _PyUnicode_AsString(name);
|
|
if (name_str == NULL)
|
|
return -1;
|
|
err = (*tp->tp_setattr)(v, name_str, value);
|
|
Py_DECREF(name);
|
|
return err;
|
|
}
|
|
Py_DECREF(name);
|
|
assert(name->ob_refcnt >= 1);
|
|
if (tp->tp_getattr == NULL && tp->tp_getattro == NULL)
|
|
PyErr_Format(PyExc_TypeError,
|
|
"'%.100s' object has no attributes "
|
|
"(%s .%U)",
|
|
tp->tp_name,
|
|
value==NULL ? "del" : "assign to",
|
|
name);
|
|
else
|
|
PyErr_Format(PyExc_TypeError,
|
|
"'%.100s' object has only read-only attributes "
|
|
"(%s .%U)",
|
|
tp->tp_name,
|
|
value==NULL ? "del" : "assign to",
|
|
name);
|
|
return -1;
|
|
}
|
|
|
|
/* Helper to get a pointer to an object's __dict__ slot, if any */
|
|
|
|
PyObject **
|
|
_PyObject_GetDictPtr(PyObject *obj)
|
|
{
|
|
Py_ssize_t dictoffset;
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
|
|
dictoffset = tp->tp_dictoffset;
|
|
if (dictoffset == 0)
|
|
return NULL;
|
|
if (dictoffset < 0) {
|
|
Py_ssize_t tsize;
|
|
size_t size;
|
|
|
|
tsize = ((PyVarObject *)obj)->ob_size;
|
|
if (tsize < 0)
|
|
tsize = -tsize;
|
|
size = _PyObject_VAR_SIZE(tp, tsize);
|
|
|
|
dictoffset += (long)size;
|
|
assert(dictoffset > 0);
|
|
assert(dictoffset % SIZEOF_VOID_P == 0);
|
|
}
|
|
return (PyObject **) ((char *)obj + dictoffset);
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_SelfIter(PyObject *obj)
|
|
{
|
|
Py_INCREF(obj);
|
|
return obj;
|
|
}
|
|
|
|
/* Helper used when the __next__ method is removed from a type:
|
|
tp_iternext is never NULL and can be safely called without checking
|
|
on every iteration.
|
|
*/
|
|
|
|
PyObject *
|
|
_PyObject_NextNotImplemented(PyObject *self)
|
|
{
|
|
PyErr_Format(PyExc_TypeError,
|
|
"'%.200s' object is not iterable",
|
|
Py_TYPE(self)->tp_name);
|
|
return NULL;
|
|
}
|
|
|
|
/* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
|
|
|
|
PyObject *
|
|
_PyObject_GenericGetAttrWithDict(PyObject *obj, PyObject *name, PyObject *dict)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
PyObject *descr = NULL;
|
|
PyObject *res = NULL;
|
|
descrgetfunc f;
|
|
Py_ssize_t dictoffset;
|
|
PyObject **dictptr;
|
|
|
|
if (!PyUnicode_Check(name)){
|
|
PyErr_Format(PyExc_TypeError,
|
|
"attribute name must be string, not '%.200s'",
|
|
name->ob_type->tp_name);
|
|
return NULL;
|
|
}
|
|
else
|
|
Py_INCREF(name);
|
|
|
|
if (tp->tp_dict == NULL) {
|
|
if (PyType_Ready(tp) < 0)
|
|
goto done;
|
|
}
|
|
|
|
descr = _PyType_Lookup(tp, name);
|
|
Py_XINCREF(descr);
|
|
|
|
f = NULL;
|
|
if (descr != NULL) {
|
|
f = descr->ob_type->tp_descr_get;
|
|
if (f != NULL && PyDescr_IsData(descr)) {
|
|
res = f(descr, obj, (PyObject *)obj->ob_type);
|
|
Py_DECREF(descr);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (dict == NULL) {
|
|
/* Inline _PyObject_GetDictPtr */
|
|
dictoffset = tp->tp_dictoffset;
|
|
if (dictoffset != 0) {
|
|
if (dictoffset < 0) {
|
|
Py_ssize_t tsize;
|
|
size_t size;
|
|
|
|
tsize = ((PyVarObject *)obj)->ob_size;
|
|
if (tsize < 0)
|
|
tsize = -tsize;
|
|
size = _PyObject_VAR_SIZE(tp, tsize);
|
|
|
|
dictoffset += (long)size;
|
|
assert(dictoffset > 0);
|
|
assert(dictoffset % SIZEOF_VOID_P == 0);
|
|
}
|
|
dictptr = (PyObject **) ((char *)obj + dictoffset);
|
|
dict = *dictptr;
|
|
}
|
|
}
|
|
if (dict != NULL) {
|
|
Py_INCREF(dict);
|
|
res = PyDict_GetItem(dict, name);
|
|
if (res != NULL) {
|
|
Py_INCREF(res);
|
|
Py_XDECREF(descr);
|
|
Py_DECREF(dict);
|
|
goto done;
|
|
}
|
|
Py_DECREF(dict);
|
|
}
|
|
|
|
if (f != NULL) {
|
|
res = f(descr, obj, (PyObject *)Py_TYPE(obj));
|
|
Py_DECREF(descr);
|
|
goto done;
|
|
}
|
|
|
|
if (descr != NULL) {
|
|
res = descr;
|
|
/* descr was already increfed above */
|
|
goto done;
|
|
}
|
|
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object has no attribute '%U'",
|
|
tp->tp_name, name);
|
|
done:
|
|
Py_DECREF(name);
|
|
return res;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_GenericGetAttr(PyObject *obj, PyObject *name)
|
|
{
|
|
return _PyObject_GenericGetAttrWithDict(obj, name, NULL);
|
|
}
|
|
|
|
int
|
|
_PyObject_GenericSetAttrWithDict(PyObject *obj, PyObject *name,
|
|
PyObject *value, PyObject *dict)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
PyObject *descr;
|
|
descrsetfunc f;
|
|
PyObject **dictptr;
|
|
int res = -1;
|
|
|
|
if (!PyUnicode_Check(name)){
|
|
PyErr_Format(PyExc_TypeError,
|
|
"attribute name must be string, not '%.200s'",
|
|
name->ob_type->tp_name);
|
|
return -1;
|
|
}
|
|
else
|
|
Py_INCREF(name);
|
|
|
|
if (tp->tp_dict == NULL) {
|
|
if (PyType_Ready(tp) < 0)
|
|
goto done;
|
|
}
|
|
|
|
descr = _PyType_Lookup(tp, name);
|
|
f = NULL;
|
|
if (descr != NULL) {
|
|
f = descr->ob_type->tp_descr_set;
|
|
if (f != NULL && PyDescr_IsData(descr)) {
|
|
res = f(descr, obj, value);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (dict == NULL) {
|
|
dictptr = _PyObject_GetDictPtr(obj);
|
|
if (dictptr != NULL) {
|
|
dict = *dictptr;
|
|
if (dict == NULL && value != NULL) {
|
|
dict = PyDict_New();
|
|
if (dict == NULL)
|
|
goto done;
|
|
*dictptr = dict;
|
|
}
|
|
}
|
|
}
|
|
if (dict != NULL) {
|
|
Py_INCREF(dict);
|
|
if (value == NULL)
|
|
res = PyDict_DelItem(dict, name);
|
|
else
|
|
res = PyDict_SetItem(dict, name, value);
|
|
if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError))
|
|
PyErr_SetObject(PyExc_AttributeError, name);
|
|
Py_DECREF(dict);
|
|
goto done;
|
|
}
|
|
|
|
if (f != NULL) {
|
|
res = f(descr, obj, value);
|
|
goto done;
|
|
}
|
|
|
|
if (descr == NULL) {
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.100s' object has no attribute '%U'",
|
|
tp->tp_name, name);
|
|
goto done;
|
|
}
|
|
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object attribute '%U' is read-only",
|
|
tp->tp_name, name);
|
|
done:
|
|
Py_DECREF(name);
|
|
return res;
|
|
}
|
|
|
|
int
|
|
PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value)
|
|
{
|
|
return _PyObject_GenericSetAttrWithDict(obj, name, value, NULL);
|
|
}
|
|
|
|
|
|
/* Test a value used as condition, e.g., in a for or if statement.
|
|
Return -1 if an error occurred */
|
|
|
|
int
|
|
PyObject_IsTrue(PyObject *v)
|
|
{
|
|
Py_ssize_t res;
|
|
if (v == Py_True)
|
|
return 1;
|
|
if (v == Py_False)
|
|
return 0;
|
|
if (v == Py_None)
|
|
return 0;
|
|
else if (v->ob_type->tp_as_number != NULL &&
|
|
v->ob_type->tp_as_number->nb_bool != NULL)
|
|
res = (*v->ob_type->tp_as_number->nb_bool)(v);
|
|
else if (v->ob_type->tp_as_mapping != NULL &&
|
|
v->ob_type->tp_as_mapping->mp_length != NULL)
|
|
res = (*v->ob_type->tp_as_mapping->mp_length)(v);
|
|
else if (v->ob_type->tp_as_sequence != NULL &&
|
|
v->ob_type->tp_as_sequence->sq_length != NULL)
|
|
res = (*v->ob_type->tp_as_sequence->sq_length)(v);
|
|
else
|
|
return 1;
|
|
/* if it is negative, it should be either -1 or -2 */
|
|
return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int);
|
|
}
|
|
|
|
/* equivalent of 'not v'
|
|
Return -1 if an error occurred */
|
|
|
|
int
|
|
PyObject_Not(PyObject *v)
|
|
{
|
|
int res;
|
|
res = PyObject_IsTrue(v);
|
|
if (res < 0)
|
|
return res;
|
|
return res == 0;
|
|
}
|
|
|
|
/* Test whether an object can be called */
|
|
|
|
int
|
|
PyCallable_Check(PyObject *x)
|
|
{
|
|
if (x == NULL)
|
|
return 0;
|
|
return x->ob_type->tp_call != NULL;
|
|
}
|
|
|
|
/* ------------------------- PyObject_Dir() helpers ------------------------- */
|
|
|
|
/* Helper for PyObject_Dir.
|
|
Merge the __dict__ of aclass into dict, and recursively also all
|
|
the __dict__s of aclass's base classes. The order of merging isn't
|
|
defined, as it's expected that only the final set of dict keys is
|
|
interesting.
|
|
Return 0 on success, -1 on error.
|
|
*/
|
|
|
|
static int
|
|
merge_class_dict(PyObject* dict, PyObject* aclass)
|
|
{
|
|
PyObject *classdict;
|
|
PyObject *bases;
|
|
|
|
assert(PyDict_Check(dict));
|
|
assert(aclass);
|
|
|
|
/* Merge in the type's dict (if any). */
|
|
classdict = PyObject_GetAttrString(aclass, "__dict__");
|
|
if (classdict == NULL)
|
|
PyErr_Clear();
|
|
else {
|
|
int status = PyDict_Update(dict, classdict);
|
|
Py_DECREF(classdict);
|
|
if (status < 0)
|
|
return -1;
|
|
}
|
|
|
|
/* Recursively merge in the base types' (if any) dicts. */
|
|
bases = PyObject_GetAttrString(aclass, "__bases__");
|
|
if (bases == NULL)
|
|
PyErr_Clear();
|
|
else {
|
|
/* We have no guarantee that bases is a real tuple */
|
|
Py_ssize_t i, n;
|
|
n = PySequence_Size(bases); /* This better be right */
|
|
if (n < 0)
|
|
PyErr_Clear();
|
|
else {
|
|
for (i = 0; i < n; i++) {
|
|
int status;
|
|
PyObject *base = PySequence_GetItem(bases, i);
|
|
if (base == NULL) {
|
|
Py_DECREF(bases);
|
|
return -1;
|
|
}
|
|
status = merge_class_dict(dict, base);
|
|
Py_DECREF(base);
|
|
if (status < 0) {
|
|
Py_DECREF(bases);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
Py_DECREF(bases);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir without arguments: returns the local scope. */
|
|
static PyObject *
|
|
_dir_locals(void)
|
|
{
|
|
PyObject *names;
|
|
PyObject *locals = PyEval_GetLocals();
|
|
|
|
if (locals == NULL) {
|
|
PyErr_SetString(PyExc_SystemError, "frame does not exist");
|
|
return NULL;
|
|
}
|
|
|
|
names = PyMapping_Keys(locals);
|
|
if (!names)
|
|
return NULL;
|
|
if (!PyList_Check(names)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"dir(): expected keys() of locals to be a list, "
|
|
"not '%.200s'", Py_TYPE(names)->tp_name);
|
|
Py_DECREF(names);
|
|
return NULL;
|
|
}
|
|
/* the locals don't need to be DECREF'd */
|
|
return names;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__.
|
|
We deliberately don't suck up its __class__, as methods belonging to the
|
|
metaclass would probably be more confusing than helpful.
|
|
*/
|
|
static PyObject *
|
|
_specialized_dir_type(PyObject *obj)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *dict = PyDict_New();
|
|
|
|
if (dict != NULL && merge_class_dict(dict, obj) == 0)
|
|
result = PyDict_Keys(dict);
|
|
|
|
Py_XDECREF(dict);
|
|
return result;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir of module objects: returns the module's __dict__. */
|
|
static PyObject *
|
|
_specialized_dir_module(PyObject *obj)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *dict = PyObject_GetAttrString(obj, "__dict__");
|
|
|
|
if (dict != NULL) {
|
|
if (PyDict_Check(dict))
|
|
result = PyDict_Keys(dict);
|
|
else {
|
|
const char *name = PyModule_GetName(obj);
|
|
if (name)
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%.200s.__dict__ is not a dictionary",
|
|
name);
|
|
}
|
|
}
|
|
|
|
Py_XDECREF(dict);
|
|
return result;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir of generic objects: returns __dict__, __class__,
|
|
and recursively up the __class__.__bases__ chain.
|
|
*/
|
|
static PyObject *
|
|
_generic_dir(PyObject *obj)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *dict = NULL;
|
|
PyObject *itsclass = NULL;
|
|
|
|
/* Get __dict__ (which may or may not be a real dict...) */
|
|
dict = PyObject_GetAttrString(obj, "__dict__");
|
|
if (dict == NULL) {
|
|
PyErr_Clear();
|
|
dict = PyDict_New();
|
|
}
|
|
else if (!PyDict_Check(dict)) {
|
|
Py_DECREF(dict);
|
|
dict = PyDict_New();
|
|
}
|
|
else {
|
|
/* Copy __dict__ to avoid mutating it. */
|
|
PyObject *temp = PyDict_Copy(dict);
|
|
Py_DECREF(dict);
|
|
dict = temp;
|
|
}
|
|
|
|
if (dict == NULL)
|
|
goto error;
|
|
|
|
/* Merge in attrs reachable from its class. */
|
|
itsclass = PyObject_GetAttrString(obj, "__class__");
|
|
if (itsclass == NULL)
|
|
/* XXX(tomer): Perhaps fall back to obj->ob_type if no
|
|
__class__ exists? */
|
|
PyErr_Clear();
|
|
else {
|
|
if (merge_class_dict(dict, itsclass) != 0)
|
|
goto error;
|
|
}
|
|
|
|
result = PyDict_Keys(dict);
|
|
/* fall through */
|
|
error:
|
|
Py_XDECREF(itsclass);
|
|
Py_XDECREF(dict);
|
|
return result;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir: object introspection.
|
|
This calls one of the above specialized versions if no __dir__ method
|
|
exists. */
|
|
static PyObject *
|
|
_dir_object(PyObject *obj)
|
|
{
|
|
PyObject * result = NULL;
|
|
PyObject * dirfunc = PyObject_GetAttrString((PyObject*)obj->ob_type,
|
|
"__dir__");
|
|
|
|
assert(obj);
|
|
if (dirfunc == NULL) {
|
|
/* use default implementation */
|
|
PyErr_Clear();
|
|
if (PyModule_Check(obj))
|
|
result = _specialized_dir_module(obj);
|
|
else if (PyType_Check(obj))
|
|
result = _specialized_dir_type(obj);
|
|
else
|
|
result = _generic_dir(obj);
|
|
}
|
|
else {
|
|
/* use __dir__ */
|
|
result = PyObject_CallFunctionObjArgs(dirfunc, obj, NULL);
|
|
Py_DECREF(dirfunc);
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
/* result must be a list */
|
|
/* XXX(gbrandl): could also check if all items are strings */
|
|
if (!PyList_Check(result)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"__dir__() must return a list, not %.200s",
|
|
Py_TYPE(result)->tp_name);
|
|
Py_DECREF(result);
|
|
result = NULL;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Implementation of dir() -- if obj is NULL, returns the names in the current
|
|
(local) scope. Otherwise, performs introspection of the object: returns a
|
|
sorted list of attribute names (supposedly) accessible from the object
|
|
*/
|
|
PyObject *
|
|
PyObject_Dir(PyObject *obj)
|
|
{
|
|
PyObject * result;
|
|
|
|
if (obj == NULL)
|
|
/* no object -- introspect the locals */
|
|
result = _dir_locals();
|
|
else
|
|
/* object -- introspect the object */
|
|
result = _dir_object(obj);
|
|
|
|
assert(result == NULL || PyList_Check(result));
|
|
|
|
if (result != NULL && PyList_Sort(result) != 0) {
|
|
/* sorting the list failed */
|
|
Py_DECREF(result);
|
|
result = NULL;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
NoObject is usable as a non-NULL undefined value, used by the macro None.
|
|
There is (and should be!) no way to create other objects of this type,
|
|
so there is exactly one (which is indestructible, by the way).
|
|
(XXX This type and the type of NotImplemented below should be unified.)
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
static PyObject *
|
|
none_repr(PyObject *op)
|
|
{
|
|
return PyUnicode_FromString("None");
|
|
}
|
|
|
|
/* ARGUSED */
|
|
static void
|
|
none_dealloc(PyObject* ignore)
|
|
{
|
|
/* This should never get called, but we also don't want to SEGV if
|
|
* we accidentally decref None out of existence.
|
|
*/
|
|
Py_FatalError("deallocating None");
|
|
}
|
|
|
|
|
|
static PyTypeObject PyNone_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"NoneType",
|
|
0,
|
|
0,
|
|
none_dealloc, /*tp_dealloc*/ /*never called*/
|
|
0, /*tp_print*/
|
|
0, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_reserved*/
|
|
none_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
0, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
0, /*tp_hash */
|
|
};
|
|
|
|
PyObject _Py_NoneStruct = {
|
|
_PyObject_EXTRA_INIT
|
|
1, &PyNone_Type
|
|
};
|
|
|
|
/* NotImplemented is an object that can be used to signal that an
|
|
operation is not implemented for the given type combination. */
|
|
|
|
static PyObject *
|
|
NotImplemented_repr(PyObject *op)
|
|
{
|
|
return PyUnicode_FromString("NotImplemented");
|
|
}
|
|
|
|
static PyTypeObject PyNotImplemented_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"NotImplementedType",
|
|
0,
|
|
0,
|
|
none_dealloc, /*tp_dealloc*/ /*never called*/
|
|
0, /*tp_print*/
|
|
0, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_reserved*/
|
|
NotImplemented_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
0, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
0, /*tp_hash */
|
|
};
|
|
|
|
PyObject _Py_NotImplementedStruct = {
|
|
_PyObject_EXTRA_INIT
|
|
1, &PyNotImplemented_Type
|
|
};
|
|
|
|
void
|
|
_Py_ReadyTypes(void)
|
|
{
|
|
if (PyType_Ready(&PyType_Type) < 0)
|
|
Py_FatalError("Can't initialize type type");
|
|
|
|
if (PyType_Ready(&_PyWeakref_RefType) < 0)
|
|
Py_FatalError("Can't initialize weakref type");
|
|
|
|
if (PyType_Ready(&_PyWeakref_CallableProxyType) < 0)
|
|
Py_FatalError("Can't initialize callable weakref proxy type");
|
|
|
|
if (PyType_Ready(&_PyWeakref_ProxyType) < 0)
|
|
Py_FatalError("Can't initialize weakref proxy type");
|
|
|
|
if (PyType_Ready(&PyBool_Type) < 0)
|
|
Py_FatalError("Can't initialize bool type");
|
|
|
|
if (PyType_Ready(&PyByteArray_Type) < 0)
|
|
Py_FatalError("Can't initialize bytearray type");
|
|
|
|
if (PyType_Ready(&PyBytes_Type) < 0)
|
|
Py_FatalError("Can't initialize 'str'");
|
|
|
|
if (PyType_Ready(&PyList_Type) < 0)
|
|
Py_FatalError("Can't initialize list type");
|
|
|
|
if (PyType_Ready(&PyNone_Type) < 0)
|
|
Py_FatalError("Can't initialize None type");
|
|
|
|
if (PyType_Ready(Py_Ellipsis->ob_type) < 0)
|
|
Py_FatalError("Can't initialize type(Ellipsis)");
|
|
|
|
if (PyType_Ready(&PyNotImplemented_Type) < 0)
|
|
Py_FatalError("Can't initialize NotImplemented type");
|
|
|
|
if (PyType_Ready(&PyTraceBack_Type) < 0)
|
|
Py_FatalError("Can't initialize traceback type");
|
|
|
|
if (PyType_Ready(&PySuper_Type) < 0)
|
|
Py_FatalError("Can't initialize super type");
|
|
|
|
if (PyType_Ready(&PyBaseObject_Type) < 0)
|
|
Py_FatalError("Can't initialize object type");
|
|
|
|
if (PyType_Ready(&PyRange_Type) < 0)
|
|
Py_FatalError("Can't initialize range type");
|
|
|
|
if (PyType_Ready(&PyDict_Type) < 0)
|
|
Py_FatalError("Can't initialize dict type");
|
|
|
|
if (PyType_Ready(&PySet_Type) < 0)
|
|
Py_FatalError("Can't initialize set type");
|
|
|
|
if (PyType_Ready(&PyUnicode_Type) < 0)
|
|
Py_FatalError("Can't initialize str type");
|
|
|
|
if (PyType_Ready(&PySlice_Type) < 0)
|
|
Py_FatalError("Can't initialize slice type");
|
|
|
|
if (PyType_Ready(&PyStaticMethod_Type) < 0)
|
|
Py_FatalError("Can't initialize static method type");
|
|
|
|
if (PyType_Ready(&PyComplex_Type) < 0)
|
|
Py_FatalError("Can't initialize complex type");
|
|
|
|
if (PyType_Ready(&PyFloat_Type) < 0)
|
|
Py_FatalError("Can't initialize float type");
|
|
|
|
if (PyType_Ready(&PyLong_Type) < 0)
|
|
Py_FatalError("Can't initialize int type");
|
|
|
|
if (PyType_Ready(&PyFrozenSet_Type) < 0)
|
|
Py_FatalError("Can't initialize frozenset type");
|
|
|
|
if (PyType_Ready(&PyProperty_Type) < 0)
|
|
Py_FatalError("Can't initialize property type");
|
|
|
|
if (PyType_Ready(&PyMemoryView_Type) < 0)
|
|
Py_FatalError("Can't initialize memoryview type");
|
|
|
|
if (PyType_Ready(&PyTuple_Type) < 0)
|
|
Py_FatalError("Can't initialize tuple type");
|
|
|
|
if (PyType_Ready(&PyEnum_Type) < 0)
|
|
Py_FatalError("Can't initialize enumerate type");
|
|
|
|
if (PyType_Ready(&PyReversed_Type) < 0)
|
|
Py_FatalError("Can't initialize reversed type");
|
|
|
|
if (PyType_Ready(&PyStdPrinter_Type) < 0)
|
|
Py_FatalError("Can't initialize StdPrinter");
|
|
|
|
if (PyType_Ready(&PyCode_Type) < 0)
|
|
Py_FatalError("Can't initialize code type");
|
|
|
|
if (PyType_Ready(&PyFrame_Type) < 0)
|
|
Py_FatalError("Can't initialize frame type");
|
|
|
|
if (PyType_Ready(&PyCFunction_Type) < 0)
|
|
Py_FatalError("Can't initialize builtin function type");
|
|
|
|
if (PyType_Ready(&PyMethod_Type) < 0)
|
|
Py_FatalError("Can't initialize method type");
|
|
|
|
if (PyType_Ready(&PyFunction_Type) < 0)
|
|
Py_FatalError("Can't initialize function type");
|
|
|
|
if (PyType_Ready(&PyDictProxy_Type) < 0)
|
|
Py_FatalError("Can't initialize dict proxy type");
|
|
|
|
if (PyType_Ready(&PyGen_Type) < 0)
|
|
Py_FatalError("Can't initialize generator type");
|
|
|
|
if (PyType_Ready(&PyGetSetDescr_Type) < 0)
|
|
Py_FatalError("Can't initialize get-set descriptor type");
|
|
|
|
if (PyType_Ready(&PyWrapperDescr_Type) < 0)
|
|
Py_FatalError("Can't initialize wrapper type");
|
|
|
|
if (PyType_Ready(&PyEllipsis_Type) < 0)
|
|
Py_FatalError("Can't initialize ellipsis type");
|
|
|
|
if (PyType_Ready(&PyMemberDescr_Type) < 0)
|
|
Py_FatalError("Can't initialize member descriptor type");
|
|
|
|
if (PyType_Ready(&PyFilter_Type) < 0)
|
|
Py_FatalError("Can't initialize filter type");
|
|
|
|
if (PyType_Ready(&PyMap_Type) < 0)
|
|
Py_FatalError("Can't initialize map type");
|
|
|
|
if (PyType_Ready(&PyZip_Type) < 0)
|
|
Py_FatalError("Can't initialize zip type");
|
|
}
|
|
|
|
|
|
#ifdef Py_TRACE_REFS
|
|
|
|
void
|
|
_Py_NewReference(PyObject *op)
|
|
{
|
|
_Py_INC_REFTOTAL;
|
|
op->ob_refcnt = 1;
|
|
_Py_AddToAllObjects(op, 1);
|
|
_Py_INC_TPALLOCS(op);
|
|
}
|
|
|
|
void
|
|
_Py_ForgetReference(register PyObject *op)
|
|
{
|
|
#ifdef SLOW_UNREF_CHECK
|
|
register PyObject *p;
|
|
#endif
|
|
if (op->ob_refcnt < 0)
|
|
Py_FatalError("UNREF negative refcnt");
|
|
if (op == &refchain ||
|
|
op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) {
|
|
fprintf(stderr, "* ob\n");
|
|
_PyObject_Dump(op);
|
|
fprintf(stderr, "* op->_ob_prev->_ob_next\n");
|
|
_PyObject_Dump(op->_ob_prev->_ob_next);
|
|
fprintf(stderr, "* op->_ob_next->_ob_prev\n");
|
|
_PyObject_Dump(op->_ob_next->_ob_prev);
|
|
Py_FatalError("UNREF invalid object");
|
|
}
|
|
#ifdef SLOW_UNREF_CHECK
|
|
for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) {
|
|
if (p == op)
|
|
break;
|
|
}
|
|
if (p == &refchain) /* Not found */
|
|
Py_FatalError("UNREF unknown object");
|
|
#endif
|
|
op->_ob_next->_ob_prev = op->_ob_prev;
|
|
op->_ob_prev->_ob_next = op->_ob_next;
|
|
op->_ob_next = op->_ob_prev = NULL;
|
|
_Py_INC_TPFREES(op);
|
|
}
|
|
|
|
void
|
|
_Py_Dealloc(PyObject *op)
|
|
{
|
|
destructor dealloc = Py_TYPE(op)->tp_dealloc;
|
|
_Py_ForgetReference(op);
|
|
(*dealloc)(op);
|
|
}
|
|
|
|
/* Print all live objects. Because PyObject_Print is called, the
|
|
* interpreter must be in a healthy state.
|
|
*/
|
|
void
|
|
_Py_PrintReferences(FILE *fp)
|
|
{
|
|
PyObject *op;
|
|
fprintf(fp, "Remaining objects:\n");
|
|
for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) {
|
|
fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt);
|
|
if (PyObject_Print(op, fp, 0) != 0)
|
|
PyErr_Clear();
|
|
putc('\n', fp);
|
|
}
|
|
}
|
|
|
|
/* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
|
|
* doesn't make any calls to the Python C API, so is always safe to call.
|
|
*/
|
|
void
|
|
_Py_PrintReferenceAddresses(FILE *fp)
|
|
{
|
|
PyObject *op;
|
|
fprintf(fp, "Remaining object addresses:\n");
|
|
for (op = refchain._ob_next; op != &refchain; op = op->_ob_next)
|
|
fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op,
|
|
op->ob_refcnt, Py_TYPE(op)->tp_name);
|
|
}
|
|
|
|
PyObject *
|
|
_Py_GetObjects(PyObject *self, PyObject *args)
|
|
{
|
|
int i, n;
|
|
PyObject *t = NULL;
|
|
PyObject *res, *op;
|
|
|
|
if (!PyArg_ParseTuple(args, "i|O", &n, &t))
|
|
return NULL;
|
|
op = refchain._ob_next;
|
|
res = PyList_New(0);
|
|
if (res == NULL)
|
|
return NULL;
|
|
for (i = 0; (n == 0 || i < n) && op != &refchain; i++) {
|
|
while (op == self || op == args || op == res || op == t ||
|
|
(t != NULL && Py_TYPE(op) != (PyTypeObject *) t)) {
|
|
op = op->_ob_next;
|
|
if (op == &refchain)
|
|
return res;
|
|
}
|
|
if (PyList_Append(res, op) < 0) {
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
op = op->_ob_next;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Hack to force loading of pycapsule.o */
|
|
PyTypeObject *_PyCapsule_hack = &PyCapsule_Type;
|
|
|
|
|
|
/* Hack to force loading of abstract.o */
|
|
Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size;
|
|
|
|
|
|
/* Python's malloc wrappers (see pymem.h) */
|
|
|
|
void *
|
|
PyMem_Malloc(size_t nbytes)
|
|
{
|
|
return PyMem_MALLOC(nbytes);
|
|
}
|
|
|
|
void *
|
|
PyMem_Realloc(void *p, size_t nbytes)
|
|
{
|
|
return PyMem_REALLOC(p, nbytes);
|
|
}
|
|
|
|
void
|
|
PyMem_Free(void *p)
|
|
{
|
|
PyMem_FREE(p);
|
|
}
|
|
|
|
|
|
/* These methods are used to control infinite recursion in repr, str, print,
|
|
etc. Container objects that may recursively contain themselves,
|
|
e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
|
|
Py_ReprLeave() to avoid infinite recursion.
|
|
|
|
Py_ReprEnter() returns 0 the first time it is called for a particular
|
|
object and 1 every time thereafter. It returns -1 if an exception
|
|
occurred. Py_ReprLeave() has no return value.
|
|
|
|
See dictobject.c and listobject.c for examples of use.
|
|
*/
|
|
|
|
#define KEY "Py_Repr"
|
|
|
|
int
|
|
Py_ReprEnter(PyObject *obj)
|
|
{
|
|
PyObject *dict;
|
|
PyObject *list;
|
|
Py_ssize_t i;
|
|
|
|
dict = PyThreadState_GetDict();
|
|
if (dict == NULL)
|
|
return 0;
|
|
list = PyDict_GetItemString(dict, KEY);
|
|
if (list == NULL) {
|
|
list = PyList_New(0);
|
|
if (list == NULL)
|
|
return -1;
|
|
if (PyDict_SetItemString(dict, KEY, list) < 0)
|
|
return -1;
|
|
Py_DECREF(list);
|
|
}
|
|
i = PyList_GET_SIZE(list);
|
|
while (--i >= 0) {
|
|
if (PyList_GET_ITEM(list, i) == obj)
|
|
return 1;
|
|
}
|
|
PyList_Append(list, obj);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
Py_ReprLeave(PyObject *obj)
|
|
{
|
|
PyObject *dict;
|
|
PyObject *list;
|
|
Py_ssize_t i;
|
|
|
|
dict = PyThreadState_GetDict();
|
|
if (dict == NULL)
|
|
return;
|
|
list = PyDict_GetItemString(dict, KEY);
|
|
if (list == NULL || !PyList_Check(list))
|
|
return;
|
|
i = PyList_GET_SIZE(list);
|
|
/* Count backwards because we always expect obj to be list[-1] */
|
|
while (--i >= 0) {
|
|
if (PyList_GET_ITEM(list, i) == obj) {
|
|
PyList_SetSlice(list, i, i + 1, NULL);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Trashcan support. */
|
|
|
|
/* Current call-stack depth of tp_dealloc calls. */
|
|
int _PyTrash_delete_nesting = 0;
|
|
|
|
/* List of objects that still need to be cleaned up, singly linked via their
|
|
* gc headers' gc_prev pointers.
|
|
*/
|
|
PyObject *_PyTrash_delete_later = NULL;
|
|
|
|
/* Add op to the _PyTrash_delete_later list. Called when the current
|
|
* call-stack depth gets large. op must be a currently untracked gc'ed
|
|
* object, with refcount 0. Py_DECREF must already have been called on it.
|
|
*/
|
|
void
|
|
_PyTrash_deposit_object(PyObject *op)
|
|
{
|
|
assert(PyObject_IS_GC(op));
|
|
assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED);
|
|
assert(op->ob_refcnt == 0);
|
|
_Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later;
|
|
_PyTrash_delete_later = op;
|
|
}
|
|
|
|
/* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
|
|
* the call-stack unwinds again.
|
|
*/
|
|
void
|
|
_PyTrash_destroy_chain(void)
|
|
{
|
|
while (_PyTrash_delete_later) {
|
|
PyObject *op = _PyTrash_delete_later;
|
|
destructor dealloc = Py_TYPE(op)->tp_dealloc;
|
|
|
|
_PyTrash_delete_later =
|
|
(PyObject*) _Py_AS_GC(op)->gc.gc_prev;
|
|
|
|
/* Call the deallocator directly. This used to try to
|
|
* fool Py_DECREF into calling it indirectly, but
|
|
* Py_DECREF was already called on this object, and in
|
|
* assorted non-release builds calling Py_DECREF again ends
|
|
* up distorting allocation statistics.
|
|
*/
|
|
assert(op->ob_refcnt == 0);
|
|
++_PyTrash_delete_nesting;
|
|
(*dealloc)(op);
|
|
--_PyTrash_delete_nesting;
|
|
}
|
|
}
|
|
|
|
#ifndef Py_TRACE_REFS
|
|
/* For Py_LIMITED_API, we need an out-of-line version of _Py_Dealloc.
|
|
Define this here, so we can undefine the macro. */
|
|
#undef _Py_Dealloc
|
|
PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
|
|
void
|
|
_Py_Dealloc(PyObject *op)
|
|
{
|
|
_Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA
|
|
(*Py_TYPE(op)->tp_dealloc)(op);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|