636 lines
16 KiB
C
636 lines
16 KiB
C
/*
|
|
* Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
#include "mpdecimal.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include "constants.h"
|
|
#include "memory.h"
|
|
#include "typearith.h"
|
|
#include "basearith.h"
|
|
|
|
|
|
/*********************************************************************/
|
|
/* Calculations in base MPD_RADIX */
|
|
/*********************************************************************/
|
|
|
|
|
|
/*
|
|
* Knuth, TAOCP, Volume 2, 4.3.1:
|
|
* w := sum of u (len m) and v (len n)
|
|
* n > 0 and m >= n
|
|
* The calling function has to handle a possible final carry.
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_baseadd(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
|
|
mpd_size_t m, mpd_size_t n)
|
|
{
|
|
mpd_uint_t s;
|
|
mpd_uint_t carry = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0 && m >= n);
|
|
|
|
/* add n members of u and v */
|
|
for (i = 0; i < n; i++) {
|
|
s = u[i] + (v[i] + carry);
|
|
carry = (s < u[i]) | (s >= MPD_RADIX);
|
|
w[i] = carry ? s-MPD_RADIX : s;
|
|
}
|
|
/* if there is a carry, propagate it */
|
|
for (; carry && i < m; i++) {
|
|
s = u[i] + carry;
|
|
carry = (s == MPD_RADIX);
|
|
w[i] = carry ? 0 : s;
|
|
}
|
|
/* copy the rest of u */
|
|
for (; i < m; i++) {
|
|
w[i] = u[i];
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/*
|
|
* Add the contents of u to w. Carries are propagated further. The caller
|
|
* has to make sure that w is big enough.
|
|
*/
|
|
void
|
|
_mpd_baseaddto(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
|
|
{
|
|
mpd_uint_t s;
|
|
mpd_uint_t carry = 0;
|
|
mpd_size_t i;
|
|
|
|
if (n == 0) return;
|
|
|
|
/* add n members of u to w */
|
|
for (i = 0; i < n; i++) {
|
|
s = w[i] + (u[i] + carry);
|
|
carry = (s < w[i]) | (s >= MPD_RADIX);
|
|
w[i] = carry ? s-MPD_RADIX : s;
|
|
}
|
|
/* if there is a carry, propagate it */
|
|
for (; carry; i++) {
|
|
s = w[i] + carry;
|
|
carry = (s == MPD_RADIX);
|
|
w[i] = carry ? 0 : s;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add v to w (len m). The calling function has to handle a possible
|
|
* final carry. Assumption: m > 0.
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_shortadd(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v)
|
|
{
|
|
mpd_uint_t s;
|
|
mpd_uint_t carry;
|
|
mpd_size_t i;
|
|
|
|
assert(m > 0);
|
|
|
|
/* add v to w */
|
|
s = w[0] + v;
|
|
carry = (s < v) | (s >= MPD_RADIX);
|
|
w[0] = carry ? s-MPD_RADIX : s;
|
|
|
|
/* if there is a carry, propagate it */
|
|
for (i = 1; carry && i < m; i++) {
|
|
s = w[i] + carry;
|
|
carry = (s == MPD_RADIX);
|
|
w[i] = carry ? 0 : s;
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/* Increment u. The calling function has to handle a possible carry. */
|
|
mpd_uint_t
|
|
_mpd_baseincr(mpd_uint_t *u, mpd_size_t n)
|
|
{
|
|
mpd_uint_t s;
|
|
mpd_uint_t carry = 1;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
/* if there is a carry, propagate it */
|
|
for (i = 0; carry && i < n; i++) {
|
|
s = u[i] + carry;
|
|
carry = (s == MPD_RADIX);
|
|
u[i] = carry ? 0 : s;
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/*
|
|
* Knuth, TAOCP, Volume 2, 4.3.1:
|
|
* w := difference of u (len m) and v (len n).
|
|
* number in u >= number in v;
|
|
*/
|
|
void
|
|
_mpd_basesub(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
|
|
mpd_size_t m, mpd_size_t n)
|
|
{
|
|
mpd_uint_t d;
|
|
mpd_uint_t borrow = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(m > 0 && n > 0);
|
|
|
|
/* subtract n members of v from u */
|
|
for (i = 0; i < n; i++) {
|
|
d = u[i] - (v[i] + borrow);
|
|
borrow = (u[i] < d);
|
|
w[i] = borrow ? d + MPD_RADIX : d;
|
|
}
|
|
/* if there is a borrow, propagate it */
|
|
for (; borrow && i < m; i++) {
|
|
d = u[i] - borrow;
|
|
borrow = (u[i] == 0);
|
|
w[i] = borrow ? MPD_RADIX-1 : d;
|
|
}
|
|
/* copy the rest of u */
|
|
for (; i < m; i++) {
|
|
w[i] = u[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Subtract the contents of u from w. w is larger than u. Borrows are
|
|
* propagated further, but eventually w can absorb the final borrow.
|
|
*/
|
|
void
|
|
_mpd_basesubfrom(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
|
|
{
|
|
mpd_uint_t d;
|
|
mpd_uint_t borrow = 0;
|
|
mpd_size_t i;
|
|
|
|
if (n == 0) return;
|
|
|
|
/* subtract n members of u from w */
|
|
for (i = 0; i < n; i++) {
|
|
d = w[i] - (u[i] + borrow);
|
|
borrow = (w[i] < d);
|
|
w[i] = borrow ? d + MPD_RADIX : d;
|
|
}
|
|
/* if there is a borrow, propagate it */
|
|
for (; borrow; i++) {
|
|
d = w[i] - borrow;
|
|
borrow = (w[i] == 0);
|
|
w[i] = borrow ? MPD_RADIX-1 : d;
|
|
}
|
|
}
|
|
|
|
/* w := product of u (len n) and v (single word) */
|
|
void
|
|
_mpd_shortmul(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t carry = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
for (i=0; i < n; i++) {
|
|
|
|
_mpd_mul_words(&hi, &lo, u[i], v);
|
|
lo = carry + lo;
|
|
if (lo < carry) hi++;
|
|
|
|
_mpd_div_words_r(&carry, &w[i], hi, lo);
|
|
}
|
|
w[i] = carry;
|
|
}
|
|
|
|
/*
|
|
* Knuth, TAOCP, Volume 2, 4.3.1:
|
|
* w := product of u (len m) and v (len n)
|
|
* w must be initialized to zero
|
|
*/
|
|
void
|
|
_mpd_basemul(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
|
|
mpd_size_t m, mpd_size_t n)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t carry;
|
|
mpd_size_t i, j;
|
|
|
|
assert(m > 0 && n > 0);
|
|
|
|
for (j=0; j < n; j++) {
|
|
carry = 0;
|
|
for (i=0; i < m; i++) {
|
|
|
|
_mpd_mul_words(&hi, &lo, u[i], v[j]);
|
|
lo = w[i+j] + lo;
|
|
if (lo < w[i+j]) hi++;
|
|
lo = carry + lo;
|
|
if (lo < carry) hi++;
|
|
|
|
_mpd_div_words_r(&carry, &w[i+j], hi, lo);
|
|
}
|
|
w[j+m] = carry;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
|
|
* w := quotient of u (len n) divided by a single word v
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_shortdiv(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t rem = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
for (i=n-1; i != MPD_SIZE_MAX; i--) {
|
|
|
|
_mpd_mul_words(&hi, &lo, rem, MPD_RADIX);
|
|
lo = u[i] + lo;
|
|
if (lo < u[i]) hi++;
|
|
|
|
_mpd_div_words(&w[i], &rem, hi, lo, v);
|
|
}
|
|
|
|
return rem;
|
|
}
|
|
|
|
/*
|
|
* Knuth, TAOCP Volume 2, 4.3.1:
|
|
* q, r := quotient and remainder of uconst (len nplusm)
|
|
* divided by vconst (len n)
|
|
* nplusm >= n
|
|
*
|
|
* If r is not NULL, r will contain the remainder. If r is NULL, the
|
|
* return value indicates if there is a remainder: 1 for true, 0 for
|
|
* false. A return value of -1 indicates an error.
|
|
*/
|
|
int
|
|
_mpd_basedivmod(mpd_uint_t *q, mpd_uint_t *r,
|
|
const mpd_uint_t *uconst, const mpd_uint_t *vconst,
|
|
mpd_size_t nplusm, mpd_size_t n)
|
|
{
|
|
mpd_uint_t ustatic[MPD_MINALLOC_MAX];
|
|
mpd_uint_t vstatic[MPD_MINALLOC_MAX];
|
|
mpd_uint_t *u = ustatic;
|
|
mpd_uint_t *v = vstatic;
|
|
mpd_uint_t d, qhat, rhat, w2[2];
|
|
mpd_uint_t hi, lo, x;
|
|
mpd_uint_t carry;
|
|
mpd_size_t i, j, m;
|
|
int retval = 0;
|
|
|
|
assert(n > 1 && nplusm >= n);
|
|
m = sub_size_t(nplusm, n);
|
|
|
|
/* D1: normalize */
|
|
d = MPD_RADIX / (vconst[n-1] + 1);
|
|
|
|
if (nplusm >= MPD_MINALLOC_MAX) {
|
|
if ((u = mpd_alloc(nplusm+1, sizeof *u)) == NULL) {
|
|
return -1;
|
|
}
|
|
}
|
|
if (n >= MPD_MINALLOC_MAX) {
|
|
if ((v = mpd_alloc(n+1, sizeof *v)) == NULL) {
|
|
mpd_free(u);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
_mpd_shortmul(u, uconst, nplusm, d);
|
|
_mpd_shortmul(v, vconst, n, d);
|
|
|
|
/* D2: loop */
|
|
for (j=m; j != MPD_SIZE_MAX; j--) {
|
|
|
|
/* D3: calculate qhat and rhat */
|
|
rhat = _mpd_shortdiv(w2, u+j+n-1, 2, v[n-1]);
|
|
qhat = w2[1] * MPD_RADIX + w2[0];
|
|
|
|
while (1) {
|
|
if (qhat < MPD_RADIX) {
|
|
_mpd_singlemul(w2, qhat, v[n-2]);
|
|
if (w2[1] <= rhat) {
|
|
if (w2[1] != rhat || w2[0] <= u[j+n-2]) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
qhat -= 1;
|
|
rhat += v[n-1];
|
|
if (rhat < v[n-1] || rhat >= MPD_RADIX) {
|
|
break;
|
|
}
|
|
}
|
|
/* D4: multiply and subtract */
|
|
carry = 0;
|
|
for (i=0; i <= n; i++) {
|
|
|
|
_mpd_mul_words(&hi, &lo, qhat, v[i]);
|
|
|
|
lo = carry + lo;
|
|
if (lo < carry) hi++;
|
|
|
|
_mpd_div_words_r(&hi, &lo, hi, lo);
|
|
|
|
x = u[i+j] - lo;
|
|
carry = (u[i+j] < x);
|
|
u[i+j] = carry ? x+MPD_RADIX : x;
|
|
carry += hi;
|
|
}
|
|
q[j] = qhat;
|
|
/* D5: test remainder */
|
|
if (carry) {
|
|
q[j] -= 1;
|
|
/* D6: add back */
|
|
(void)_mpd_baseadd(u+j, u+j, v, n+1, n);
|
|
}
|
|
}
|
|
|
|
/* D8: unnormalize */
|
|
if (r != NULL) {
|
|
_mpd_shortdiv(r, u, n, d);
|
|
/* we are not interested in the return value here */
|
|
retval = 0;
|
|
}
|
|
else {
|
|
retval = !_mpd_isallzero(u, n);
|
|
}
|
|
|
|
|
|
if (u != ustatic) mpd_free(u);
|
|
if (v != vstatic) mpd_free(v);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Left shift of src by 'shift' digits; src may equal dest.
|
|
*
|
|
* dest := area of n mpd_uint_t with space for srcdigits+shift digits.
|
|
* src := coefficient with length m.
|
|
*
|
|
* The case splits in the function are non-obvious. The following
|
|
* equations might help:
|
|
*
|
|
* Let msdigits denote the number of digits in the most significant
|
|
* word of src. Then 1 <= msdigits <= rdigits.
|
|
*
|
|
* 1) shift = q * rdigits + r
|
|
* 2) srcdigits = qsrc * rdigits + msdigits
|
|
* 3) destdigits = shift + srcdigits
|
|
* = q * rdigits + r + qsrc * rdigits + msdigits
|
|
* = q * rdigits + (qsrc * rdigits + (r + msdigits))
|
|
*
|
|
* The result has q zero words, followed by the coefficient that
|
|
* is left-shifted by r. The case r == 0 is trivial. For r > 0, it
|
|
* is important to keep in mind that we always read m source words,
|
|
* but write m+1 destination words if r + msdigits > rdigits, m words
|
|
* otherwise.
|
|
*/
|
|
void
|
|
_mpd_baseshiftl(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t n, mpd_size_t m,
|
|
mpd_size_t shift)
|
|
{
|
|
#if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
|
|
/* spurious uninitialized warnings */
|
|
mpd_uint_t l=l, lprev=lprev, h=h;
|
|
#else
|
|
mpd_uint_t l, lprev, h;
|
|
#endif
|
|
mpd_uint_t q, r;
|
|
mpd_uint_t ph;
|
|
|
|
assert(m > 0 && n >= m);
|
|
|
|
_mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
|
|
|
|
if (r != 0) {
|
|
|
|
ph = mpd_pow10[r];
|
|
|
|
--m; --n;
|
|
_mpd_divmod_pow10(&h, &lprev, src[m--], MPD_RDIGITS-r);
|
|
if (h != 0) { /* r + msdigits > rdigits <==> h != 0 */
|
|
dest[n--] = h;
|
|
}
|
|
/* write m-1 shifted words */
|
|
for (; m != MPD_SIZE_MAX; m--,n--) {
|
|
_mpd_divmod_pow10(&h, &l, src[m], MPD_RDIGITS-r);
|
|
dest[n] = ph * lprev + h;
|
|
lprev = l;
|
|
}
|
|
/* write least significant word */
|
|
dest[q] = ph * lprev;
|
|
}
|
|
else {
|
|
while (--m != MPD_SIZE_MAX) {
|
|
dest[m+q] = src[m];
|
|
}
|
|
}
|
|
|
|
mpd_uint_zero(dest, q);
|
|
}
|
|
|
|
/*
|
|
* Right shift of src by 'shift' digits; src may equal dest.
|
|
* Assumption: srcdigits-shift > 0.
|
|
*
|
|
* dest := area with space for srcdigits-shift digits.
|
|
* src := coefficient with length 'slen'.
|
|
*
|
|
* The case splits in the function rely on the following equations:
|
|
*
|
|
* Let msdigits denote the number of digits in the most significant
|
|
* word of src. Then 1 <= msdigits <= rdigits.
|
|
*
|
|
* 1) shift = q * rdigits + r
|
|
* 2) srcdigits = qsrc * rdigits + msdigits
|
|
* 3) destdigits = srcdigits - shift
|
|
* = qsrc * rdigits + msdigits - (q * rdigits + r)
|
|
* = (qsrc - q) * rdigits + msdigits - r
|
|
*
|
|
* Since destdigits > 0 and 1 <= msdigits <= rdigits:
|
|
*
|
|
* 4) qsrc >= q
|
|
* 5) qsrc == q ==> msdigits > r
|
|
*
|
|
* The result has slen-q words if msdigits > r, slen-q-1 words otherwise.
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_baseshiftr(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t slen,
|
|
mpd_size_t shift)
|
|
{
|
|
#if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
|
|
/* spurious uninitialized warnings */
|
|
mpd_uint_t l=l, h=h, hprev=hprev; /* low, high, previous high */
|
|
#else
|
|
mpd_uint_t l, h, hprev; /* low, high, previous high */
|
|
#endif
|
|
mpd_uint_t rnd, rest; /* rounding digit, rest */
|
|
mpd_uint_t q, r;
|
|
mpd_size_t i, j;
|
|
mpd_uint_t ph;
|
|
|
|
assert(slen > 0);
|
|
|
|
_mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
|
|
|
|
rnd = rest = 0;
|
|
if (r != 0) {
|
|
|
|
ph = mpd_pow10[MPD_RDIGITS-r];
|
|
|
|
_mpd_divmod_pow10(&hprev, &rest, src[q], r);
|
|
_mpd_divmod_pow10(&rnd, &rest, rest, r-1);
|
|
|
|
if (rest == 0 && q > 0) {
|
|
rest = !_mpd_isallzero(src, q);
|
|
}
|
|
/* write slen-q-1 words */
|
|
for (j=0,i=q+1; i<slen; i++,j++) {
|
|
_mpd_divmod_pow10(&h, &l, src[i], r);
|
|
dest[j] = ph * l + hprev;
|
|
hprev = h;
|
|
}
|
|
/* write most significant word */
|
|
if (hprev != 0) { /* always the case if slen==q-1 */
|
|
dest[j] = hprev;
|
|
}
|
|
}
|
|
else {
|
|
if (q > 0) {
|
|
_mpd_divmod_pow10(&rnd, &rest, src[q-1], MPD_RDIGITS-1);
|
|
/* is there any non-zero digit below rnd? */
|
|
if (rest == 0) rest = !_mpd_isallzero(src, q-1);
|
|
}
|
|
for (j = 0; j < slen-q; j++) {
|
|
dest[j] = src[q+j];
|
|
}
|
|
}
|
|
|
|
/* 0-4 ==> rnd+rest < 0.5 */
|
|
/* 5 ==> rnd+rest == 0.5 */
|
|
/* 6-9 ==> rnd+rest > 0.5 */
|
|
return (rnd == 0 || rnd == 5) ? rnd + !!rest : rnd;
|
|
}
|
|
|
|
|
|
/*********************************************************************/
|
|
/* Calculations in base b */
|
|
/*********************************************************************/
|
|
|
|
/*
|
|
* Add v to w (len m). The calling function has to handle a possible
|
|
* final carry. Assumption: m > 0.
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_shortadd_b(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v, mpd_uint_t b)
|
|
{
|
|
mpd_uint_t s;
|
|
mpd_uint_t carry;
|
|
mpd_size_t i;
|
|
|
|
assert(m > 0);
|
|
|
|
/* add v to w */
|
|
s = w[0] + v;
|
|
carry = (s < v) | (s >= b);
|
|
w[0] = carry ? s-b : s;
|
|
|
|
/* if there is a carry, propagate it */
|
|
for (i = 1; carry && i < m; i++) {
|
|
s = w[i] + carry;
|
|
carry = (s == b);
|
|
w[i] = carry ? 0 : s;
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/* w := product of u (len n) and v (single word) */
|
|
void
|
|
_mpd_shortmul_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
|
|
mpd_uint_t v, mpd_uint_t b)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t carry = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
for (i=0; i < n; i++) {
|
|
|
|
_mpd_mul_words(&hi, &lo, u[i], v);
|
|
lo = carry + lo;
|
|
if (lo < carry) hi++;
|
|
|
|
_mpd_div_words(&carry, &w[i], hi, lo, b);
|
|
}
|
|
w[i] = carry;
|
|
}
|
|
|
|
/*
|
|
* Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
|
|
* w := quotient of u (len n) divided by a single word v
|
|
*/
|
|
mpd_uint_t
|
|
_mpd_shortdiv_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
|
|
mpd_uint_t v, mpd_uint_t b)
|
|
{
|
|
mpd_uint_t hi, lo;
|
|
mpd_uint_t rem = 0;
|
|
mpd_size_t i;
|
|
|
|
assert(n > 0);
|
|
|
|
for (i=n-1; i != MPD_SIZE_MAX; i--) {
|
|
|
|
_mpd_mul_words(&hi, &lo, rem, b);
|
|
lo = u[i] + lo;
|
|
if (lo < u[i]) hi++;
|
|
|
|
_mpd_div_words(&w[i], &rem, hi, lo, v);
|
|
}
|
|
|
|
return rem;
|
|
}
|
|
|
|
|
|
|