5315 lines
162 KiB
C
5315 lines
162 KiB
C
/*
|
|
* This file includes functions to transform a concrete syntax tree (CST) to
|
|
* an abstract syntax tree (AST). The main function is PyAST_FromNode().
|
|
*
|
|
*/
|
|
#include "Python.h"
|
|
#include "Python-ast.h"
|
|
#include "node.h"
|
|
#include "ast.h"
|
|
#include "token.h"
|
|
#include "pythonrun.h"
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
|
|
static int validate_stmts(asdl_seq *);
|
|
static int validate_exprs(asdl_seq *, expr_context_ty, int);
|
|
static int validate_nonempty_seq(asdl_seq *, const char *, const char *);
|
|
static int validate_stmt(stmt_ty);
|
|
static int validate_expr(expr_ty, expr_context_ty);
|
|
|
|
static int
|
|
validate_comprehension(asdl_seq *gens)
|
|
{
|
|
int i;
|
|
if (!asdl_seq_LEN(gens)) {
|
|
PyErr_SetString(PyExc_ValueError, "comprehension with no generators");
|
|
return 0;
|
|
}
|
|
for (i = 0; i < asdl_seq_LEN(gens); i++) {
|
|
comprehension_ty comp = asdl_seq_GET(gens, i);
|
|
if (!validate_expr(comp->target, Store) ||
|
|
!validate_expr(comp->iter, Load) ||
|
|
!validate_exprs(comp->ifs, Load, 0))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
validate_slice(slice_ty slice)
|
|
{
|
|
switch (slice->kind) {
|
|
case Slice_kind:
|
|
return (!slice->v.Slice.lower || validate_expr(slice->v.Slice.lower, Load)) &&
|
|
(!slice->v.Slice.upper || validate_expr(slice->v.Slice.upper, Load)) &&
|
|
(!slice->v.Slice.step || validate_expr(slice->v.Slice.step, Load));
|
|
case ExtSlice_kind: {
|
|
int i;
|
|
if (!validate_nonempty_seq(slice->v.ExtSlice.dims, "dims", "ExtSlice"))
|
|
return 0;
|
|
for (i = 0; i < asdl_seq_LEN(slice->v.ExtSlice.dims); i++)
|
|
if (!validate_slice(asdl_seq_GET(slice->v.ExtSlice.dims, i)))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
case Index_kind:
|
|
return validate_expr(slice->v.Index.value, Load);
|
|
default:
|
|
PyErr_SetString(PyExc_SystemError, "unknown slice node");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
validate_keywords(asdl_seq *keywords)
|
|
{
|
|
int i;
|
|
for (i = 0; i < asdl_seq_LEN(keywords); i++)
|
|
if (!validate_expr(((keyword_ty)asdl_seq_GET(keywords, i))->value, Load))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
validate_args(asdl_seq *args)
|
|
{
|
|
int i;
|
|
for (i = 0; i < asdl_seq_LEN(args); i++) {
|
|
arg_ty arg = asdl_seq_GET(args, i);
|
|
if (arg->annotation && !validate_expr(arg->annotation, Load))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static const char *
|
|
expr_context_name(expr_context_ty ctx)
|
|
{
|
|
switch (ctx) {
|
|
case Load:
|
|
return "Load";
|
|
case Store:
|
|
return "Store";
|
|
case Del:
|
|
return "Del";
|
|
case AugLoad:
|
|
return "AugLoad";
|
|
case AugStore:
|
|
return "AugStore";
|
|
case Param:
|
|
return "Param";
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
static int
|
|
validate_arguments(arguments_ty args)
|
|
{
|
|
if (!validate_args(args->args))
|
|
return 0;
|
|
if (args->vararg && args->vararg->annotation
|
|
&& !validate_expr(args->vararg->annotation, Load)) {
|
|
return 0;
|
|
}
|
|
if (!validate_args(args->kwonlyargs))
|
|
return 0;
|
|
if (args->kwarg && args->kwarg->annotation
|
|
&& !validate_expr(args->kwarg->annotation, Load)) {
|
|
return 0;
|
|
}
|
|
if (asdl_seq_LEN(args->defaults) > asdl_seq_LEN(args->args)) {
|
|
PyErr_SetString(PyExc_ValueError, "more positional defaults than args on arguments");
|
|
return 0;
|
|
}
|
|
if (asdl_seq_LEN(args->kw_defaults) != asdl_seq_LEN(args->kwonlyargs)) {
|
|
PyErr_SetString(PyExc_ValueError, "length of kwonlyargs is not the same as "
|
|
"kw_defaults on arguments");
|
|
return 0;
|
|
}
|
|
return validate_exprs(args->defaults, Load, 0) && validate_exprs(args->kw_defaults, Load, 1);
|
|
}
|
|
|
|
static int
|
|
validate_constant(PyObject *value)
|
|
{
|
|
if (value == Py_None || value == Py_Ellipsis)
|
|
return 1;
|
|
|
|
if (PyLong_CheckExact(value)
|
|
|| PyFloat_CheckExact(value)
|
|
|| PyComplex_CheckExact(value)
|
|
|| PyBool_Check(value)
|
|
|| PyUnicode_CheckExact(value)
|
|
|| PyBytes_CheckExact(value))
|
|
return 1;
|
|
|
|
if (PyTuple_CheckExact(value) || PyFrozenSet_CheckExact(value)) {
|
|
PyObject *it;
|
|
|
|
it = PyObject_GetIter(value);
|
|
if (it == NULL)
|
|
return 0;
|
|
|
|
while (1) {
|
|
PyObject *item = PyIter_Next(it);
|
|
if (item == NULL) {
|
|
if (PyErr_Occurred()) {
|
|
Py_DECREF(it);
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!validate_constant(item)) {
|
|
Py_DECREF(it);
|
|
Py_DECREF(item);
|
|
return 0;
|
|
}
|
|
Py_DECREF(item);
|
|
}
|
|
|
|
Py_DECREF(it);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
validate_expr(expr_ty exp, expr_context_ty ctx)
|
|
{
|
|
int check_ctx = 1;
|
|
expr_context_ty actual_ctx;
|
|
|
|
/* First check expression context. */
|
|
switch (exp->kind) {
|
|
case Attribute_kind:
|
|
actual_ctx = exp->v.Attribute.ctx;
|
|
break;
|
|
case Subscript_kind:
|
|
actual_ctx = exp->v.Subscript.ctx;
|
|
break;
|
|
case Starred_kind:
|
|
actual_ctx = exp->v.Starred.ctx;
|
|
break;
|
|
case Name_kind:
|
|
actual_ctx = exp->v.Name.ctx;
|
|
break;
|
|
case List_kind:
|
|
actual_ctx = exp->v.List.ctx;
|
|
break;
|
|
case Tuple_kind:
|
|
actual_ctx = exp->v.Tuple.ctx;
|
|
break;
|
|
default:
|
|
if (ctx != Load) {
|
|
PyErr_Format(PyExc_ValueError, "expression which can't be "
|
|
"assigned to in %s context", expr_context_name(ctx));
|
|
return 0;
|
|
}
|
|
check_ctx = 0;
|
|
/* set actual_ctx to prevent gcc warning */
|
|
actual_ctx = 0;
|
|
}
|
|
if (check_ctx && actual_ctx != ctx) {
|
|
PyErr_Format(PyExc_ValueError, "expression must have %s context but has %s instead",
|
|
expr_context_name(ctx), expr_context_name(actual_ctx));
|
|
return 0;
|
|
}
|
|
|
|
/* Now validate expression. */
|
|
switch (exp->kind) {
|
|
case BoolOp_kind:
|
|
if (asdl_seq_LEN(exp->v.BoolOp.values) < 2) {
|
|
PyErr_SetString(PyExc_ValueError, "BoolOp with less than 2 values");
|
|
return 0;
|
|
}
|
|
return validate_exprs(exp->v.BoolOp.values, Load, 0);
|
|
case BinOp_kind:
|
|
return validate_expr(exp->v.BinOp.left, Load) &&
|
|
validate_expr(exp->v.BinOp.right, Load);
|
|
case UnaryOp_kind:
|
|
return validate_expr(exp->v.UnaryOp.operand, Load);
|
|
case Lambda_kind:
|
|
return validate_arguments(exp->v.Lambda.args) &&
|
|
validate_expr(exp->v.Lambda.body, Load);
|
|
case IfExp_kind:
|
|
return validate_expr(exp->v.IfExp.test, Load) &&
|
|
validate_expr(exp->v.IfExp.body, Load) &&
|
|
validate_expr(exp->v.IfExp.orelse, Load);
|
|
case Dict_kind:
|
|
if (asdl_seq_LEN(exp->v.Dict.keys) != asdl_seq_LEN(exp->v.Dict.values)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"Dict doesn't have the same number of keys as values");
|
|
return 0;
|
|
}
|
|
/* null_ok=1 for keys expressions to allow dict unpacking to work in
|
|
dict literals, i.e. ``{**{a:b}}`` */
|
|
return validate_exprs(exp->v.Dict.keys, Load, /*null_ok=*/ 1) &&
|
|
validate_exprs(exp->v.Dict.values, Load, /*null_ok=*/ 0);
|
|
case Set_kind:
|
|
return validate_exprs(exp->v.Set.elts, Load, 0);
|
|
#define COMP(NAME) \
|
|
case NAME ## _kind: \
|
|
return validate_comprehension(exp->v.NAME.generators) && \
|
|
validate_expr(exp->v.NAME.elt, Load);
|
|
COMP(ListComp)
|
|
COMP(SetComp)
|
|
COMP(GeneratorExp)
|
|
#undef COMP
|
|
case DictComp_kind:
|
|
return validate_comprehension(exp->v.DictComp.generators) &&
|
|
validate_expr(exp->v.DictComp.key, Load) &&
|
|
validate_expr(exp->v.DictComp.value, Load);
|
|
case Yield_kind:
|
|
return !exp->v.Yield.value || validate_expr(exp->v.Yield.value, Load);
|
|
case YieldFrom_kind:
|
|
return validate_expr(exp->v.YieldFrom.value, Load);
|
|
case Await_kind:
|
|
return validate_expr(exp->v.Await.value, Load);
|
|
case Compare_kind:
|
|
if (!asdl_seq_LEN(exp->v.Compare.comparators)) {
|
|
PyErr_SetString(PyExc_ValueError, "Compare with no comparators");
|
|
return 0;
|
|
}
|
|
if (asdl_seq_LEN(exp->v.Compare.comparators) !=
|
|
asdl_seq_LEN(exp->v.Compare.ops)) {
|
|
PyErr_SetString(PyExc_ValueError, "Compare has a different number "
|
|
"of comparators and operands");
|
|
return 0;
|
|
}
|
|
return validate_exprs(exp->v.Compare.comparators, Load, 0) &&
|
|
validate_expr(exp->v.Compare.left, Load);
|
|
case Call_kind:
|
|
return validate_expr(exp->v.Call.func, Load) &&
|
|
validate_exprs(exp->v.Call.args, Load, 0) &&
|
|
validate_keywords(exp->v.Call.keywords);
|
|
case Constant_kind:
|
|
if (!validate_constant(exp->v.Constant.value)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"got an invalid type in Constant: %s",
|
|
Py_TYPE(exp->v.Constant.value)->tp_name);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
case Num_kind: {
|
|
PyObject *n = exp->v.Num.n;
|
|
if (!PyLong_CheckExact(n) && !PyFloat_CheckExact(n) &&
|
|
!PyComplex_CheckExact(n)) {
|
|
PyErr_SetString(PyExc_TypeError, "non-numeric type in Num");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
case Str_kind: {
|
|
PyObject *s = exp->v.Str.s;
|
|
if (!PyUnicode_CheckExact(s)) {
|
|
PyErr_SetString(PyExc_TypeError, "non-string type in Str");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
case JoinedStr_kind:
|
|
return validate_exprs(exp->v.JoinedStr.values, Load, 0);
|
|
case FormattedValue_kind:
|
|
if (validate_expr(exp->v.FormattedValue.value, Load) == 0)
|
|
return 0;
|
|
if (exp->v.FormattedValue.format_spec)
|
|
return validate_expr(exp->v.FormattedValue.format_spec, Load);
|
|
return 1;
|
|
case Bytes_kind: {
|
|
PyObject *b = exp->v.Bytes.s;
|
|
if (!PyBytes_CheckExact(b)) {
|
|
PyErr_SetString(PyExc_TypeError, "non-bytes type in Bytes");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
case Attribute_kind:
|
|
return validate_expr(exp->v.Attribute.value, Load);
|
|
case Subscript_kind:
|
|
return validate_slice(exp->v.Subscript.slice) &&
|
|
validate_expr(exp->v.Subscript.value, Load);
|
|
case Starred_kind:
|
|
return validate_expr(exp->v.Starred.value, ctx);
|
|
case List_kind:
|
|
return validate_exprs(exp->v.List.elts, ctx, 0);
|
|
case Tuple_kind:
|
|
return validate_exprs(exp->v.Tuple.elts, ctx, 0);
|
|
/* These last cases don't have any checking. */
|
|
case Name_kind:
|
|
case NameConstant_kind:
|
|
case Ellipsis_kind:
|
|
return 1;
|
|
default:
|
|
PyErr_SetString(PyExc_SystemError, "unexpected expression");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
validate_nonempty_seq(asdl_seq *seq, const char *what, const char *owner)
|
|
{
|
|
if (asdl_seq_LEN(seq))
|
|
return 1;
|
|
PyErr_Format(PyExc_ValueError, "empty %s on %s", what, owner);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
validate_assignlist(asdl_seq *targets, expr_context_ty ctx)
|
|
{
|
|
return validate_nonempty_seq(targets, "targets", ctx == Del ? "Delete" : "Assign") &&
|
|
validate_exprs(targets, ctx, 0);
|
|
}
|
|
|
|
static int
|
|
validate_body(asdl_seq *body, const char *owner)
|
|
{
|
|
return validate_nonempty_seq(body, "body", owner) && validate_stmts(body);
|
|
}
|
|
|
|
static int
|
|
validate_stmt(stmt_ty stmt)
|
|
{
|
|
int i;
|
|
switch (stmt->kind) {
|
|
case FunctionDef_kind:
|
|
return validate_body(stmt->v.FunctionDef.body, "FunctionDef") &&
|
|
validate_arguments(stmt->v.FunctionDef.args) &&
|
|
validate_exprs(stmt->v.FunctionDef.decorator_list, Load, 0) &&
|
|
(!stmt->v.FunctionDef.returns ||
|
|
validate_expr(stmt->v.FunctionDef.returns, Load));
|
|
case ClassDef_kind:
|
|
return validate_body(stmt->v.ClassDef.body, "ClassDef") &&
|
|
validate_exprs(stmt->v.ClassDef.bases, Load, 0) &&
|
|
validate_keywords(stmt->v.ClassDef.keywords) &&
|
|
validate_exprs(stmt->v.ClassDef.decorator_list, Load, 0);
|
|
case Return_kind:
|
|
return !stmt->v.Return.value || validate_expr(stmt->v.Return.value, Load);
|
|
case Delete_kind:
|
|
return validate_assignlist(stmt->v.Delete.targets, Del);
|
|
case Assign_kind:
|
|
return validate_assignlist(stmt->v.Assign.targets, Store) &&
|
|
validate_expr(stmt->v.Assign.value, Load);
|
|
case AugAssign_kind:
|
|
return validate_expr(stmt->v.AugAssign.target, Store) &&
|
|
validate_expr(stmt->v.AugAssign.value, Load);
|
|
case AnnAssign_kind:
|
|
if (stmt->v.AnnAssign.target->kind != Name_kind &&
|
|
stmt->v.AnnAssign.simple) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"AnnAssign with simple non-Name target");
|
|
return 0;
|
|
}
|
|
return validate_expr(stmt->v.AnnAssign.target, Store) &&
|
|
(!stmt->v.AnnAssign.value ||
|
|
validate_expr(stmt->v.AnnAssign.value, Load)) &&
|
|
validate_expr(stmt->v.AnnAssign.annotation, Load);
|
|
case For_kind:
|
|
return validate_expr(stmt->v.For.target, Store) &&
|
|
validate_expr(stmt->v.For.iter, Load) &&
|
|
validate_body(stmt->v.For.body, "For") &&
|
|
validate_stmts(stmt->v.For.orelse);
|
|
case AsyncFor_kind:
|
|
return validate_expr(stmt->v.AsyncFor.target, Store) &&
|
|
validate_expr(stmt->v.AsyncFor.iter, Load) &&
|
|
validate_body(stmt->v.AsyncFor.body, "AsyncFor") &&
|
|
validate_stmts(stmt->v.AsyncFor.orelse);
|
|
case While_kind:
|
|
return validate_expr(stmt->v.While.test, Load) &&
|
|
validate_body(stmt->v.While.body, "While") &&
|
|
validate_stmts(stmt->v.While.orelse);
|
|
case If_kind:
|
|
return validate_expr(stmt->v.If.test, Load) &&
|
|
validate_body(stmt->v.If.body, "If") &&
|
|
validate_stmts(stmt->v.If.orelse);
|
|
case With_kind:
|
|
if (!validate_nonempty_seq(stmt->v.With.items, "items", "With"))
|
|
return 0;
|
|
for (i = 0; i < asdl_seq_LEN(stmt->v.With.items); i++) {
|
|
withitem_ty item = asdl_seq_GET(stmt->v.With.items, i);
|
|
if (!validate_expr(item->context_expr, Load) ||
|
|
(item->optional_vars && !validate_expr(item->optional_vars, Store)))
|
|
return 0;
|
|
}
|
|
return validate_body(stmt->v.With.body, "With");
|
|
case AsyncWith_kind:
|
|
if (!validate_nonempty_seq(stmt->v.AsyncWith.items, "items", "AsyncWith"))
|
|
return 0;
|
|
for (i = 0; i < asdl_seq_LEN(stmt->v.AsyncWith.items); i++) {
|
|
withitem_ty item = asdl_seq_GET(stmt->v.AsyncWith.items, i);
|
|
if (!validate_expr(item->context_expr, Load) ||
|
|
(item->optional_vars && !validate_expr(item->optional_vars, Store)))
|
|
return 0;
|
|
}
|
|
return validate_body(stmt->v.AsyncWith.body, "AsyncWith");
|
|
case Raise_kind:
|
|
if (stmt->v.Raise.exc) {
|
|
return validate_expr(stmt->v.Raise.exc, Load) &&
|
|
(!stmt->v.Raise.cause || validate_expr(stmt->v.Raise.cause, Load));
|
|
}
|
|
if (stmt->v.Raise.cause) {
|
|
PyErr_SetString(PyExc_ValueError, "Raise with cause but no exception");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
case Try_kind:
|
|
if (!validate_body(stmt->v.Try.body, "Try"))
|
|
return 0;
|
|
if (!asdl_seq_LEN(stmt->v.Try.handlers) &&
|
|
!asdl_seq_LEN(stmt->v.Try.finalbody)) {
|
|
PyErr_SetString(PyExc_ValueError, "Try has neither except handlers nor finalbody");
|
|
return 0;
|
|
}
|
|
if (!asdl_seq_LEN(stmt->v.Try.handlers) &&
|
|
asdl_seq_LEN(stmt->v.Try.orelse)) {
|
|
PyErr_SetString(PyExc_ValueError, "Try has orelse but no except handlers");
|
|
return 0;
|
|
}
|
|
for (i = 0; i < asdl_seq_LEN(stmt->v.Try.handlers); i++) {
|
|
excepthandler_ty handler = asdl_seq_GET(stmt->v.Try.handlers, i);
|
|
if ((handler->v.ExceptHandler.type &&
|
|
!validate_expr(handler->v.ExceptHandler.type, Load)) ||
|
|
!validate_body(handler->v.ExceptHandler.body, "ExceptHandler"))
|
|
return 0;
|
|
}
|
|
return (!asdl_seq_LEN(stmt->v.Try.finalbody) ||
|
|
validate_stmts(stmt->v.Try.finalbody)) &&
|
|
(!asdl_seq_LEN(stmt->v.Try.orelse) ||
|
|
validate_stmts(stmt->v.Try.orelse));
|
|
case Assert_kind:
|
|
return validate_expr(stmt->v.Assert.test, Load) &&
|
|
(!stmt->v.Assert.msg || validate_expr(stmt->v.Assert.msg, Load));
|
|
case Import_kind:
|
|
return validate_nonempty_seq(stmt->v.Import.names, "names", "Import");
|
|
case ImportFrom_kind:
|
|
if (stmt->v.ImportFrom.level < 0) {
|
|
PyErr_SetString(PyExc_ValueError, "Negative ImportFrom level");
|
|
return 0;
|
|
}
|
|
return validate_nonempty_seq(stmt->v.ImportFrom.names, "names", "ImportFrom");
|
|
case Global_kind:
|
|
return validate_nonempty_seq(stmt->v.Global.names, "names", "Global");
|
|
case Nonlocal_kind:
|
|
return validate_nonempty_seq(stmt->v.Nonlocal.names, "names", "Nonlocal");
|
|
case Expr_kind:
|
|
return validate_expr(stmt->v.Expr.value, Load);
|
|
case AsyncFunctionDef_kind:
|
|
return validate_body(stmt->v.AsyncFunctionDef.body, "AsyncFunctionDef") &&
|
|
validate_arguments(stmt->v.AsyncFunctionDef.args) &&
|
|
validate_exprs(stmt->v.AsyncFunctionDef.decorator_list, Load, 0) &&
|
|
(!stmt->v.AsyncFunctionDef.returns ||
|
|
validate_expr(stmt->v.AsyncFunctionDef.returns, Load));
|
|
case Pass_kind:
|
|
case Break_kind:
|
|
case Continue_kind:
|
|
return 1;
|
|
default:
|
|
PyErr_SetString(PyExc_SystemError, "unexpected statement");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
validate_stmts(asdl_seq *seq)
|
|
{
|
|
int i;
|
|
for (i = 0; i < asdl_seq_LEN(seq); i++) {
|
|
stmt_ty stmt = asdl_seq_GET(seq, i);
|
|
if (stmt) {
|
|
if (!validate_stmt(stmt))
|
|
return 0;
|
|
}
|
|
else {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"None disallowed in statement list");
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
validate_exprs(asdl_seq *exprs, expr_context_ty ctx, int null_ok)
|
|
{
|
|
int i;
|
|
for (i = 0; i < asdl_seq_LEN(exprs); i++) {
|
|
expr_ty expr = asdl_seq_GET(exprs, i);
|
|
if (expr) {
|
|
if (!validate_expr(expr, ctx))
|
|
return 0;
|
|
}
|
|
else if (!null_ok) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"None disallowed in expression list");
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
PyAST_Validate(mod_ty mod)
|
|
{
|
|
int res = 0;
|
|
|
|
switch (mod->kind) {
|
|
case Module_kind:
|
|
res = validate_stmts(mod->v.Module.body);
|
|
break;
|
|
case Interactive_kind:
|
|
res = validate_stmts(mod->v.Interactive.body);
|
|
break;
|
|
case Expression_kind:
|
|
res = validate_expr(mod->v.Expression.body, Load);
|
|
break;
|
|
case Suite_kind:
|
|
PyErr_SetString(PyExc_ValueError, "Suite is not valid in the CPython compiler");
|
|
break;
|
|
default:
|
|
PyErr_SetString(PyExc_SystemError, "impossible module node");
|
|
res = 0;
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* This is done here, so defines like "test" don't interfere with AST use above. */
|
|
#include "grammar.h"
|
|
#include "parsetok.h"
|
|
#include "graminit.h"
|
|
|
|
/* Data structure used internally */
|
|
struct compiling {
|
|
PyArena *c_arena; /* Arena for allocating memory. */
|
|
PyObject *c_filename; /* filename */
|
|
PyObject *c_normalize; /* Normalization function from unicodedata. */
|
|
};
|
|
|
|
static asdl_seq *seq_for_testlist(struct compiling *, const node *);
|
|
static expr_ty ast_for_expr(struct compiling *, const node *);
|
|
static stmt_ty ast_for_stmt(struct compiling *, const node *);
|
|
static asdl_seq *ast_for_suite(struct compiling *c, const node *n);
|
|
static asdl_seq *ast_for_exprlist(struct compiling *, const node *,
|
|
expr_context_ty);
|
|
static expr_ty ast_for_testlist(struct compiling *, const node *);
|
|
static stmt_ty ast_for_classdef(struct compiling *, const node *, asdl_seq *);
|
|
|
|
static stmt_ty ast_for_with_stmt(struct compiling *, const node *, bool);
|
|
static stmt_ty ast_for_for_stmt(struct compiling *, const node *, bool);
|
|
|
|
/* Note different signature for ast_for_call */
|
|
static expr_ty ast_for_call(struct compiling *, const node *, expr_ty, bool);
|
|
|
|
static PyObject *parsenumber(struct compiling *, const char *);
|
|
static expr_ty parsestrplus(struct compiling *, const node *n);
|
|
|
|
#define COMP_GENEXP 0
|
|
#define COMP_LISTCOMP 1
|
|
#define COMP_SETCOMP 2
|
|
|
|
static int
|
|
init_normalization(struct compiling *c)
|
|
{
|
|
PyObject *m = PyImport_ImportModuleNoBlock("unicodedata");
|
|
if (!m)
|
|
return 0;
|
|
c->c_normalize = PyObject_GetAttrString(m, "normalize");
|
|
Py_DECREF(m);
|
|
if (!c->c_normalize)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static identifier
|
|
new_identifier(const char *n, struct compiling *c)
|
|
{
|
|
PyObject *id = PyUnicode_DecodeUTF8(n, strlen(n), NULL);
|
|
if (!id)
|
|
return NULL;
|
|
/* PyUnicode_DecodeUTF8 should always return a ready string. */
|
|
assert(PyUnicode_IS_READY(id));
|
|
/* Check whether there are non-ASCII characters in the
|
|
identifier; if so, normalize to NFKC. */
|
|
if (!PyUnicode_IS_ASCII(id)) {
|
|
PyObject *id2;
|
|
_Py_IDENTIFIER(NFKC);
|
|
if (!c->c_normalize && !init_normalization(c)) {
|
|
Py_DECREF(id);
|
|
return NULL;
|
|
}
|
|
PyObject *form = _PyUnicode_FromId(&PyId_NFKC);
|
|
if (form == NULL) {
|
|
Py_DECREF(id);
|
|
return NULL;
|
|
}
|
|
PyObject *args[2] = {form, id};
|
|
id2 = _PyObject_FastCall(c->c_normalize, args, 2);
|
|
Py_DECREF(id);
|
|
if (!id2)
|
|
return NULL;
|
|
if (!PyUnicode_Check(id2)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"unicodedata.normalize() must return a string, not "
|
|
"%.200s",
|
|
Py_TYPE(id2)->tp_name);
|
|
Py_DECREF(id2);
|
|
return NULL;
|
|
}
|
|
id = id2;
|
|
}
|
|
PyUnicode_InternInPlace(&id);
|
|
if (PyArena_AddPyObject(c->c_arena, id) < 0) {
|
|
Py_DECREF(id);
|
|
return NULL;
|
|
}
|
|
return id;
|
|
}
|
|
|
|
#define NEW_IDENTIFIER(n) new_identifier(STR(n), c)
|
|
|
|
static int
|
|
ast_error(struct compiling *c, const node *n, const char *errmsg)
|
|
{
|
|
PyObject *value, *errstr, *loc, *tmp;
|
|
|
|
loc = PyErr_ProgramTextObject(c->c_filename, LINENO(n));
|
|
if (!loc) {
|
|
Py_INCREF(Py_None);
|
|
loc = Py_None;
|
|
}
|
|
tmp = Py_BuildValue("(OiiN)", c->c_filename, LINENO(n), n->n_col_offset + 1, loc);
|
|
if (!tmp)
|
|
return 0;
|
|
errstr = PyUnicode_FromString(errmsg);
|
|
if (!errstr) {
|
|
Py_DECREF(tmp);
|
|
return 0;
|
|
}
|
|
value = PyTuple_Pack(2, errstr, tmp);
|
|
Py_DECREF(errstr);
|
|
Py_DECREF(tmp);
|
|
if (value) {
|
|
PyErr_SetObject(PyExc_SyntaxError, value);
|
|
Py_DECREF(value);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* num_stmts() returns number of contained statements.
|
|
|
|
Use this routine to determine how big a sequence is needed for
|
|
the statements in a parse tree. Its raison d'etre is this bit of
|
|
grammar:
|
|
|
|
stmt: simple_stmt | compound_stmt
|
|
simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE
|
|
|
|
A simple_stmt can contain multiple small_stmt elements joined
|
|
by semicolons. If the arg is a simple_stmt, the number of
|
|
small_stmt elements is returned.
|
|
*/
|
|
|
|
static int
|
|
num_stmts(const node *n)
|
|
{
|
|
int i, l;
|
|
node *ch;
|
|
|
|
switch (TYPE(n)) {
|
|
case single_input:
|
|
if (TYPE(CHILD(n, 0)) == NEWLINE)
|
|
return 0;
|
|
else
|
|
return num_stmts(CHILD(n, 0));
|
|
case file_input:
|
|
l = 0;
|
|
for (i = 0; i < NCH(n); i++) {
|
|
ch = CHILD(n, i);
|
|
if (TYPE(ch) == stmt)
|
|
l += num_stmts(ch);
|
|
}
|
|
return l;
|
|
case stmt:
|
|
return num_stmts(CHILD(n, 0));
|
|
case compound_stmt:
|
|
return 1;
|
|
case simple_stmt:
|
|
return NCH(n) / 2; /* Divide by 2 to remove count of semi-colons */
|
|
case suite:
|
|
if (NCH(n) == 1)
|
|
return num_stmts(CHILD(n, 0));
|
|
else {
|
|
l = 0;
|
|
for (i = 2; i < (NCH(n) - 1); i++)
|
|
l += num_stmts(CHILD(n, i));
|
|
return l;
|
|
}
|
|
default: {
|
|
char buf[128];
|
|
|
|
sprintf(buf, "Non-statement found: %d %d",
|
|
TYPE(n), NCH(n));
|
|
Py_FatalError(buf);
|
|
}
|
|
}
|
|
Py_UNREACHABLE();
|
|
}
|
|
|
|
/* Transform the CST rooted at node * to the appropriate AST
|
|
*/
|
|
|
|
mod_ty
|
|
PyAST_FromNodeObject(const node *n, PyCompilerFlags *flags,
|
|
PyObject *filename, PyArena *arena)
|
|
{
|
|
int i, j, k, num;
|
|
asdl_seq *stmts = NULL;
|
|
stmt_ty s;
|
|
node *ch;
|
|
struct compiling c;
|
|
mod_ty res = NULL;
|
|
|
|
c.c_arena = arena;
|
|
/* borrowed reference */
|
|
c.c_filename = filename;
|
|
c.c_normalize = NULL;
|
|
|
|
if (TYPE(n) == encoding_decl)
|
|
n = CHILD(n, 0);
|
|
|
|
k = 0;
|
|
switch (TYPE(n)) {
|
|
case file_input:
|
|
stmts = _Py_asdl_seq_new(num_stmts(n), arena);
|
|
if (!stmts)
|
|
goto out;
|
|
for (i = 0; i < NCH(n) - 1; i++) {
|
|
ch = CHILD(n, i);
|
|
if (TYPE(ch) == NEWLINE)
|
|
continue;
|
|
REQ(ch, stmt);
|
|
num = num_stmts(ch);
|
|
if (num == 1) {
|
|
s = ast_for_stmt(&c, ch);
|
|
if (!s)
|
|
goto out;
|
|
asdl_seq_SET(stmts, k++, s);
|
|
}
|
|
else {
|
|
ch = CHILD(ch, 0);
|
|
REQ(ch, simple_stmt);
|
|
for (j = 0; j < num; j++) {
|
|
s = ast_for_stmt(&c, CHILD(ch, j * 2));
|
|
if (!s)
|
|
goto out;
|
|
asdl_seq_SET(stmts, k++, s);
|
|
}
|
|
}
|
|
}
|
|
res = Module(stmts, arena);
|
|
break;
|
|
case eval_input: {
|
|
expr_ty testlist_ast;
|
|
|
|
/* XXX Why not comp_for here? */
|
|
testlist_ast = ast_for_testlist(&c, CHILD(n, 0));
|
|
if (!testlist_ast)
|
|
goto out;
|
|
res = Expression(testlist_ast, arena);
|
|
break;
|
|
}
|
|
case single_input:
|
|
if (TYPE(CHILD(n, 0)) == NEWLINE) {
|
|
stmts = _Py_asdl_seq_new(1, arena);
|
|
if (!stmts)
|
|
goto out;
|
|
asdl_seq_SET(stmts, 0, Pass(n->n_lineno, n->n_col_offset,
|
|
arena));
|
|
if (!asdl_seq_GET(stmts, 0))
|
|
goto out;
|
|
res = Interactive(stmts, arena);
|
|
}
|
|
else {
|
|
n = CHILD(n, 0);
|
|
num = num_stmts(n);
|
|
stmts = _Py_asdl_seq_new(num, arena);
|
|
if (!stmts)
|
|
goto out;
|
|
if (num == 1) {
|
|
s = ast_for_stmt(&c, n);
|
|
if (!s)
|
|
goto out;
|
|
asdl_seq_SET(stmts, 0, s);
|
|
}
|
|
else {
|
|
/* Only a simple_stmt can contain multiple statements. */
|
|
REQ(n, simple_stmt);
|
|
for (i = 0; i < NCH(n); i += 2) {
|
|
if (TYPE(CHILD(n, i)) == NEWLINE)
|
|
break;
|
|
s = ast_for_stmt(&c, CHILD(n, i));
|
|
if (!s)
|
|
goto out;
|
|
asdl_seq_SET(stmts, i / 2, s);
|
|
}
|
|
}
|
|
|
|
res = Interactive(stmts, arena);
|
|
}
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"invalid node %d for PyAST_FromNode", TYPE(n));
|
|
goto out;
|
|
}
|
|
out:
|
|
if (c.c_normalize) {
|
|
Py_DECREF(c.c_normalize);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
mod_ty
|
|
PyAST_FromNode(const node *n, PyCompilerFlags *flags, const char *filename_str,
|
|
PyArena *arena)
|
|
{
|
|
mod_ty mod;
|
|
PyObject *filename;
|
|
filename = PyUnicode_DecodeFSDefault(filename_str);
|
|
if (filename == NULL)
|
|
return NULL;
|
|
mod = PyAST_FromNodeObject(n, flags, filename, arena);
|
|
Py_DECREF(filename);
|
|
return mod;
|
|
|
|
}
|
|
|
|
/* Return the AST repr. of the operator represented as syntax (|, ^, etc.)
|
|
*/
|
|
|
|
static operator_ty
|
|
get_operator(const node *n)
|
|
{
|
|
switch (TYPE(n)) {
|
|
case VBAR:
|
|
return BitOr;
|
|
case CIRCUMFLEX:
|
|
return BitXor;
|
|
case AMPER:
|
|
return BitAnd;
|
|
case LEFTSHIFT:
|
|
return LShift;
|
|
case RIGHTSHIFT:
|
|
return RShift;
|
|
case PLUS:
|
|
return Add;
|
|
case MINUS:
|
|
return Sub;
|
|
case STAR:
|
|
return Mult;
|
|
case AT:
|
|
return MatMult;
|
|
case SLASH:
|
|
return Div;
|
|
case DOUBLESLASH:
|
|
return FloorDiv;
|
|
case PERCENT:
|
|
return Mod;
|
|
default:
|
|
return (operator_ty)0;
|
|
}
|
|
}
|
|
|
|
static const char * const FORBIDDEN[] = {
|
|
"None",
|
|
"True",
|
|
"False",
|
|
NULL,
|
|
};
|
|
|
|
static int
|
|
forbidden_name(struct compiling *c, identifier name, const node *n,
|
|
int full_checks)
|
|
{
|
|
assert(PyUnicode_Check(name));
|
|
if (_PyUnicode_EqualToASCIIString(name, "__debug__")) {
|
|
ast_error(c, n, "assignment to keyword");
|
|
return 1;
|
|
}
|
|
if (full_checks) {
|
|
const char * const *p;
|
|
for (p = FORBIDDEN; *p; p++) {
|
|
if (_PyUnicode_EqualToASCIIString(name, *p)) {
|
|
ast_error(c, n, "assignment to keyword");
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Set the context ctx for expr_ty e, recursively traversing e.
|
|
|
|
Only sets context for expr kinds that "can appear in assignment context"
|
|
(according to ../Parser/Python.asdl). For other expr kinds, it sets
|
|
an appropriate syntax error and returns false.
|
|
*/
|
|
|
|
static int
|
|
set_context(struct compiling *c, expr_ty e, expr_context_ty ctx, const node *n)
|
|
{
|
|
asdl_seq *s = NULL;
|
|
/* If a particular expression type can't be used for assign / delete,
|
|
set expr_name to its name and an error message will be generated.
|
|
*/
|
|
const char* expr_name = NULL;
|
|
|
|
/* The ast defines augmented store and load contexts, but the
|
|
implementation here doesn't actually use them. The code may be
|
|
a little more complex than necessary as a result. It also means
|
|
that expressions in an augmented assignment have a Store context.
|
|
Consider restructuring so that augmented assignment uses
|
|
set_context(), too.
|
|
*/
|
|
assert(ctx != AugStore && ctx != AugLoad);
|
|
|
|
switch (e->kind) {
|
|
case Attribute_kind:
|
|
e->v.Attribute.ctx = ctx;
|
|
if (ctx == Store && forbidden_name(c, e->v.Attribute.attr, n, 1))
|
|
return 0;
|
|
break;
|
|
case Subscript_kind:
|
|
e->v.Subscript.ctx = ctx;
|
|
break;
|
|
case Starred_kind:
|
|
e->v.Starred.ctx = ctx;
|
|
if (!set_context(c, e->v.Starred.value, ctx, n))
|
|
return 0;
|
|
break;
|
|
case Name_kind:
|
|
if (ctx == Store) {
|
|
if (forbidden_name(c, e->v.Name.id, n, 0))
|
|
return 0; /* forbidden_name() calls ast_error() */
|
|
}
|
|
e->v.Name.ctx = ctx;
|
|
break;
|
|
case List_kind:
|
|
e->v.List.ctx = ctx;
|
|
s = e->v.List.elts;
|
|
break;
|
|
case Tuple_kind:
|
|
e->v.Tuple.ctx = ctx;
|
|
s = e->v.Tuple.elts;
|
|
break;
|
|
case Lambda_kind:
|
|
expr_name = "lambda";
|
|
break;
|
|
case Call_kind:
|
|
expr_name = "function call";
|
|
break;
|
|
case BoolOp_kind:
|
|
case BinOp_kind:
|
|
case UnaryOp_kind:
|
|
expr_name = "operator";
|
|
break;
|
|
case GeneratorExp_kind:
|
|
expr_name = "generator expression";
|
|
break;
|
|
case Yield_kind:
|
|
case YieldFrom_kind:
|
|
expr_name = "yield expression";
|
|
break;
|
|
case Await_kind:
|
|
expr_name = "await expression";
|
|
break;
|
|
case ListComp_kind:
|
|
expr_name = "list comprehension";
|
|
break;
|
|
case SetComp_kind:
|
|
expr_name = "set comprehension";
|
|
break;
|
|
case DictComp_kind:
|
|
expr_name = "dict comprehension";
|
|
break;
|
|
case Dict_kind:
|
|
case Set_kind:
|
|
case Num_kind:
|
|
case Str_kind:
|
|
case Bytes_kind:
|
|
case JoinedStr_kind:
|
|
case FormattedValue_kind:
|
|
expr_name = "literal";
|
|
break;
|
|
case NameConstant_kind:
|
|
expr_name = "keyword";
|
|
break;
|
|
case Ellipsis_kind:
|
|
expr_name = "Ellipsis";
|
|
break;
|
|
case Compare_kind:
|
|
expr_name = "comparison";
|
|
break;
|
|
case IfExp_kind:
|
|
expr_name = "conditional expression";
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unexpected expression in assignment %d (line %d)",
|
|
e->kind, e->lineno);
|
|
return 0;
|
|
}
|
|
/* Check for error string set by switch */
|
|
if (expr_name) {
|
|
char buf[300];
|
|
PyOS_snprintf(buf, sizeof(buf),
|
|
"can't %s %s",
|
|
ctx == Store ? "assign to" : "delete",
|
|
expr_name);
|
|
return ast_error(c, n, buf);
|
|
}
|
|
|
|
/* If the LHS is a list or tuple, we need to set the assignment
|
|
context for all the contained elements.
|
|
*/
|
|
if (s) {
|
|
int i;
|
|
|
|
for (i = 0; i < asdl_seq_LEN(s); i++) {
|
|
if (!set_context(c, (expr_ty)asdl_seq_GET(s, i), ctx, n))
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static operator_ty
|
|
ast_for_augassign(struct compiling *c, const node *n)
|
|
{
|
|
REQ(n, augassign);
|
|
n = CHILD(n, 0);
|
|
switch (STR(n)[0]) {
|
|
case '+':
|
|
return Add;
|
|
case '-':
|
|
return Sub;
|
|
case '/':
|
|
if (STR(n)[1] == '/')
|
|
return FloorDiv;
|
|
else
|
|
return Div;
|
|
case '%':
|
|
return Mod;
|
|
case '<':
|
|
return LShift;
|
|
case '>':
|
|
return RShift;
|
|
case '&':
|
|
return BitAnd;
|
|
case '^':
|
|
return BitXor;
|
|
case '|':
|
|
return BitOr;
|
|
case '*':
|
|
if (STR(n)[1] == '*')
|
|
return Pow;
|
|
else
|
|
return Mult;
|
|
case '@':
|
|
return MatMult;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError, "invalid augassign: %s", STR(n));
|
|
return (operator_ty)0;
|
|
}
|
|
}
|
|
|
|
static cmpop_ty
|
|
ast_for_comp_op(struct compiling *c, const node *n)
|
|
{
|
|
/* comp_op: '<'|'>'|'=='|'>='|'<='|'!='|'in'|'not' 'in'|'is'
|
|
|'is' 'not'
|
|
*/
|
|
REQ(n, comp_op);
|
|
if (NCH(n) == 1) {
|
|
n = CHILD(n, 0);
|
|
switch (TYPE(n)) {
|
|
case LESS:
|
|
return Lt;
|
|
case GREATER:
|
|
return Gt;
|
|
case EQEQUAL: /* == */
|
|
return Eq;
|
|
case LESSEQUAL:
|
|
return LtE;
|
|
case GREATEREQUAL:
|
|
return GtE;
|
|
case NOTEQUAL:
|
|
return NotEq;
|
|
case NAME:
|
|
if (strcmp(STR(n), "in") == 0)
|
|
return In;
|
|
if (strcmp(STR(n), "is") == 0)
|
|
return Is;
|
|
/* fall through */
|
|
default:
|
|
PyErr_Format(PyExc_SystemError, "invalid comp_op: %s",
|
|
STR(n));
|
|
return (cmpop_ty)0;
|
|
}
|
|
}
|
|
else if (NCH(n) == 2) {
|
|
/* handle "not in" and "is not" */
|
|
switch (TYPE(CHILD(n, 0))) {
|
|
case NAME:
|
|
if (strcmp(STR(CHILD(n, 1)), "in") == 0)
|
|
return NotIn;
|
|
if (strcmp(STR(CHILD(n, 0)), "is") == 0)
|
|
return IsNot;
|
|
/* fall through */
|
|
default:
|
|
PyErr_Format(PyExc_SystemError, "invalid comp_op: %s %s",
|
|
STR(CHILD(n, 0)), STR(CHILD(n, 1)));
|
|
return (cmpop_ty)0;
|
|
}
|
|
}
|
|
PyErr_Format(PyExc_SystemError, "invalid comp_op: has %d children",
|
|
NCH(n));
|
|
return (cmpop_ty)0;
|
|
}
|
|
|
|
static asdl_seq *
|
|
seq_for_testlist(struct compiling *c, const node *n)
|
|
{
|
|
/* testlist: test (',' test)* [',']
|
|
testlist_star_expr: test|star_expr (',' test|star_expr)* [',']
|
|
*/
|
|
asdl_seq *seq;
|
|
expr_ty expression;
|
|
int i;
|
|
assert(TYPE(n) == testlist || TYPE(n) == testlist_star_expr || TYPE(n) == testlist_comp);
|
|
|
|
seq = _Py_asdl_seq_new((NCH(n) + 1) / 2, c->c_arena);
|
|
if (!seq)
|
|
return NULL;
|
|
|
|
for (i = 0; i < NCH(n); i += 2) {
|
|
const node *ch = CHILD(n, i);
|
|
assert(TYPE(ch) == test || TYPE(ch) == test_nocond || TYPE(ch) == star_expr);
|
|
|
|
expression = ast_for_expr(c, ch);
|
|
if (!expression)
|
|
return NULL;
|
|
|
|
assert(i / 2 < seq->size);
|
|
asdl_seq_SET(seq, i / 2, expression);
|
|
}
|
|
return seq;
|
|
}
|
|
|
|
static arg_ty
|
|
ast_for_arg(struct compiling *c, const node *n)
|
|
{
|
|
identifier name;
|
|
expr_ty annotation = NULL;
|
|
node *ch;
|
|
arg_ty ret;
|
|
|
|
assert(TYPE(n) == tfpdef || TYPE(n) == vfpdef);
|
|
ch = CHILD(n, 0);
|
|
name = NEW_IDENTIFIER(ch);
|
|
if (!name)
|
|
return NULL;
|
|
if (forbidden_name(c, name, ch, 0))
|
|
return NULL;
|
|
|
|
if (NCH(n) == 3 && TYPE(CHILD(n, 1)) == COLON) {
|
|
annotation = ast_for_expr(c, CHILD(n, 2));
|
|
if (!annotation)
|
|
return NULL;
|
|
}
|
|
|
|
ret = arg(name, annotation, LINENO(n), n->n_col_offset, c->c_arena);
|
|
if (!ret)
|
|
return NULL;
|
|
return ret;
|
|
}
|
|
|
|
/* returns -1 if failed to handle keyword only arguments
|
|
returns new position to keep processing if successful
|
|
(',' tfpdef ['=' test])*
|
|
^^^
|
|
start pointing here
|
|
*/
|
|
static int
|
|
handle_keywordonly_args(struct compiling *c, const node *n, int start,
|
|
asdl_seq *kwonlyargs, asdl_seq *kwdefaults)
|
|
{
|
|
PyObject *argname;
|
|
node *ch;
|
|
expr_ty expression, annotation;
|
|
arg_ty arg;
|
|
int i = start;
|
|
int j = 0; /* index for kwdefaults and kwonlyargs */
|
|
|
|
if (kwonlyargs == NULL) {
|
|
ast_error(c, CHILD(n, start), "named arguments must follow bare *");
|
|
return -1;
|
|
}
|
|
assert(kwdefaults != NULL);
|
|
while (i < NCH(n)) {
|
|
ch = CHILD(n, i);
|
|
switch (TYPE(ch)) {
|
|
case vfpdef:
|
|
case tfpdef:
|
|
if (i + 1 < NCH(n) && TYPE(CHILD(n, i + 1)) == EQUAL) {
|
|
expression = ast_for_expr(c, CHILD(n, i + 2));
|
|
if (!expression)
|
|
goto error;
|
|
asdl_seq_SET(kwdefaults, j, expression);
|
|
i += 2; /* '=' and test */
|
|
}
|
|
else { /* setting NULL if no default value exists */
|
|
asdl_seq_SET(kwdefaults, j, NULL);
|
|
}
|
|
if (NCH(ch) == 3) {
|
|
/* ch is NAME ':' test */
|
|
annotation = ast_for_expr(c, CHILD(ch, 2));
|
|
if (!annotation)
|
|
goto error;
|
|
}
|
|
else {
|
|
annotation = NULL;
|
|
}
|
|
ch = CHILD(ch, 0);
|
|
argname = NEW_IDENTIFIER(ch);
|
|
if (!argname)
|
|
goto error;
|
|
if (forbidden_name(c, argname, ch, 0))
|
|
goto error;
|
|
arg = arg(argname, annotation, LINENO(ch), ch->n_col_offset,
|
|
c->c_arena);
|
|
if (!arg)
|
|
goto error;
|
|
asdl_seq_SET(kwonlyargs, j++, arg);
|
|
i += 2; /* the name and the comma */
|
|
break;
|
|
case DOUBLESTAR:
|
|
return i;
|
|
default:
|
|
ast_error(c, ch, "unexpected node");
|
|
goto error;
|
|
}
|
|
}
|
|
return i;
|
|
error:
|
|
return -1;
|
|
}
|
|
|
|
/* Create AST for argument list. */
|
|
|
|
static arguments_ty
|
|
ast_for_arguments(struct compiling *c, const node *n)
|
|
{
|
|
/* This function handles both typedargslist (function definition)
|
|
and varargslist (lambda definition).
|
|
|
|
parameters: '(' [typedargslist] ')'
|
|
typedargslist: (tfpdef ['=' test] (',' tfpdef ['=' test])* [',' [
|
|
'*' [tfpdef] (',' tfpdef ['=' test])* [',' ['**' tfpdef [',']]]
|
|
| '**' tfpdef [',']]]
|
|
| '*' [tfpdef] (',' tfpdef ['=' test])* [',' ['**' tfpdef [',']]]
|
|
| '**' tfpdef [','])
|
|
tfpdef: NAME [':' test]
|
|
varargslist: (vfpdef ['=' test] (',' vfpdef ['=' test])* [',' [
|
|
'*' [vfpdef] (',' vfpdef ['=' test])* [',' ['**' vfpdef [',']]]
|
|
| '**' vfpdef [',']]]
|
|
| '*' [vfpdef] (',' vfpdef ['=' test])* [',' ['**' vfpdef [',']]]
|
|
| '**' vfpdef [',']
|
|
)
|
|
vfpdef: NAME
|
|
|
|
*/
|
|
int i, j, k, nposargs = 0, nkwonlyargs = 0;
|
|
int nposdefaults = 0, found_default = 0;
|
|
asdl_seq *posargs, *posdefaults, *kwonlyargs, *kwdefaults;
|
|
arg_ty vararg = NULL, kwarg = NULL;
|
|
arg_ty arg;
|
|
node *ch;
|
|
|
|
if (TYPE(n) == parameters) {
|
|
if (NCH(n) == 2) /* () as argument list */
|
|
return arguments(NULL, NULL, NULL, NULL, NULL, NULL, c->c_arena);
|
|
n = CHILD(n, 1);
|
|
}
|
|
assert(TYPE(n) == typedargslist || TYPE(n) == varargslist);
|
|
|
|
/* First count the number of positional args & defaults. The
|
|
variable i is the loop index for this for loop and the next.
|
|
The next loop picks up where the first leaves off.
|
|
*/
|
|
for (i = 0; i < NCH(n); i++) {
|
|
ch = CHILD(n, i);
|
|
if (TYPE(ch) == STAR) {
|
|
/* skip star */
|
|
i++;
|
|
if (i < NCH(n) && /* skip argument following star */
|
|
(TYPE(CHILD(n, i)) == tfpdef ||
|
|
TYPE(CHILD(n, i)) == vfpdef)) {
|
|
i++;
|
|
}
|
|
break;
|
|
}
|
|
if (TYPE(ch) == DOUBLESTAR) break;
|
|
if (TYPE(ch) == vfpdef || TYPE(ch) == tfpdef) nposargs++;
|
|
if (TYPE(ch) == EQUAL) nposdefaults++;
|
|
}
|
|
/* count the number of keyword only args &
|
|
defaults for keyword only args */
|
|
for ( ; i < NCH(n); ++i) {
|
|
ch = CHILD(n, i);
|
|
if (TYPE(ch) == DOUBLESTAR) break;
|
|
if (TYPE(ch) == tfpdef || TYPE(ch) == vfpdef) nkwonlyargs++;
|
|
}
|
|
posargs = (nposargs ? _Py_asdl_seq_new(nposargs, c->c_arena) : NULL);
|
|
if (!posargs && nposargs)
|
|
return NULL;
|
|
kwonlyargs = (nkwonlyargs ?
|
|
_Py_asdl_seq_new(nkwonlyargs, c->c_arena) : NULL);
|
|
if (!kwonlyargs && nkwonlyargs)
|
|
return NULL;
|
|
posdefaults = (nposdefaults ?
|
|
_Py_asdl_seq_new(nposdefaults, c->c_arena) : NULL);
|
|
if (!posdefaults && nposdefaults)
|
|
return NULL;
|
|
/* The length of kwonlyargs and kwdefaults are same
|
|
since we set NULL as default for keyword only argument w/o default
|
|
- we have sequence data structure, but no dictionary */
|
|
kwdefaults = (nkwonlyargs ?
|
|
_Py_asdl_seq_new(nkwonlyargs, c->c_arena) : NULL);
|
|
if (!kwdefaults && nkwonlyargs)
|
|
return NULL;
|
|
|
|
/* tfpdef: NAME [':' test]
|
|
vfpdef: NAME
|
|
*/
|
|
i = 0;
|
|
j = 0; /* index for defaults */
|
|
k = 0; /* index for args */
|
|
while (i < NCH(n)) {
|
|
ch = CHILD(n, i);
|
|
switch (TYPE(ch)) {
|
|
case tfpdef:
|
|
case vfpdef:
|
|
/* XXX Need to worry about checking if TYPE(CHILD(n, i+1)) is
|
|
anything other than EQUAL or a comma? */
|
|
/* XXX Should NCH(n) check be made a separate check? */
|
|
if (i + 1 < NCH(n) && TYPE(CHILD(n, i + 1)) == EQUAL) {
|
|
expr_ty expression = ast_for_expr(c, CHILD(n, i + 2));
|
|
if (!expression)
|
|
return NULL;
|
|
assert(posdefaults != NULL);
|
|
asdl_seq_SET(posdefaults, j++, expression);
|
|
i += 2;
|
|
found_default = 1;
|
|
}
|
|
else if (found_default) {
|
|
ast_error(c, n,
|
|
"non-default argument follows default argument");
|
|
return NULL;
|
|
}
|
|
arg = ast_for_arg(c, ch);
|
|
if (!arg)
|
|
return NULL;
|
|
asdl_seq_SET(posargs, k++, arg);
|
|
i += 2; /* the name and the comma */
|
|
break;
|
|
case STAR:
|
|
if (i+1 >= NCH(n) ||
|
|
(i+2 == NCH(n) && TYPE(CHILD(n, i+1)) == COMMA)) {
|
|
ast_error(c, CHILD(n, i),
|
|
"named arguments must follow bare *");
|
|
return NULL;
|
|
}
|
|
ch = CHILD(n, i+1); /* tfpdef or COMMA */
|
|
if (TYPE(ch) == COMMA) {
|
|
int res = 0;
|
|
i += 2; /* now follows keyword only arguments */
|
|
res = handle_keywordonly_args(c, n, i,
|
|
kwonlyargs, kwdefaults);
|
|
if (res == -1) return NULL;
|
|
i = res; /* res has new position to process */
|
|
}
|
|
else {
|
|
vararg = ast_for_arg(c, ch);
|
|
if (!vararg)
|
|
return NULL;
|
|
|
|
i += 3;
|
|
if (i < NCH(n) && (TYPE(CHILD(n, i)) == tfpdef
|
|
|| TYPE(CHILD(n, i)) == vfpdef)) {
|
|
int res = 0;
|
|
res = handle_keywordonly_args(c, n, i,
|
|
kwonlyargs, kwdefaults);
|
|
if (res == -1) return NULL;
|
|
i = res; /* res has new position to process */
|
|
}
|
|
}
|
|
break;
|
|
case DOUBLESTAR:
|
|
ch = CHILD(n, i+1); /* tfpdef */
|
|
assert(TYPE(ch) == tfpdef || TYPE(ch) == vfpdef);
|
|
kwarg = ast_for_arg(c, ch);
|
|
if (!kwarg)
|
|
return NULL;
|
|
i += 3;
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unexpected node in varargslist: %d @ %d",
|
|
TYPE(ch), i);
|
|
return NULL;
|
|
}
|
|
}
|
|
return arguments(posargs, vararg, kwonlyargs, kwdefaults, kwarg, posdefaults, c->c_arena);
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_dotted_name(struct compiling *c, const node *n)
|
|
{
|
|
expr_ty e;
|
|
identifier id;
|
|
int lineno, col_offset;
|
|
int i;
|
|
|
|
REQ(n, dotted_name);
|
|
|
|
lineno = LINENO(n);
|
|
col_offset = n->n_col_offset;
|
|
|
|
id = NEW_IDENTIFIER(CHILD(n, 0));
|
|
if (!id)
|
|
return NULL;
|
|
e = Name(id, Load, lineno, col_offset, c->c_arena);
|
|
if (!e)
|
|
return NULL;
|
|
|
|
for (i = 2; i < NCH(n); i+=2) {
|
|
id = NEW_IDENTIFIER(CHILD(n, i));
|
|
if (!id)
|
|
return NULL;
|
|
e = Attribute(e, id, Load, lineno, col_offset, c->c_arena);
|
|
if (!e)
|
|
return NULL;
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_decorator(struct compiling *c, const node *n)
|
|
{
|
|
/* decorator: '@' dotted_name [ '(' [arglist] ')' ] NEWLINE */
|
|
expr_ty d = NULL;
|
|
expr_ty name_expr;
|
|
|
|
REQ(n, decorator);
|
|
REQ(CHILD(n, 0), AT);
|
|
REQ(RCHILD(n, -1), NEWLINE);
|
|
|
|
name_expr = ast_for_dotted_name(c, CHILD(n, 1));
|
|
if (!name_expr)
|
|
return NULL;
|
|
|
|
if (NCH(n) == 3) { /* No arguments */
|
|
d = name_expr;
|
|
name_expr = NULL;
|
|
}
|
|
else if (NCH(n) == 5) { /* Call with no arguments */
|
|
d = Call(name_expr, NULL, NULL, LINENO(n),
|
|
n->n_col_offset, c->c_arena);
|
|
if (!d)
|
|
return NULL;
|
|
name_expr = NULL;
|
|
}
|
|
else {
|
|
d = ast_for_call(c, CHILD(n, 3), name_expr, true);
|
|
if (!d)
|
|
return NULL;
|
|
name_expr = NULL;
|
|
}
|
|
|
|
return d;
|
|
}
|
|
|
|
static asdl_seq*
|
|
ast_for_decorators(struct compiling *c, const node *n)
|
|
{
|
|
asdl_seq* decorator_seq;
|
|
expr_ty d;
|
|
int i;
|
|
|
|
REQ(n, decorators);
|
|
decorator_seq = _Py_asdl_seq_new(NCH(n), c->c_arena);
|
|
if (!decorator_seq)
|
|
return NULL;
|
|
|
|
for (i = 0; i < NCH(n); i++) {
|
|
d = ast_for_decorator(c, CHILD(n, i));
|
|
if (!d)
|
|
return NULL;
|
|
asdl_seq_SET(decorator_seq, i, d);
|
|
}
|
|
return decorator_seq;
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_funcdef_impl(struct compiling *c, const node *n0,
|
|
asdl_seq *decorator_seq, bool is_async)
|
|
{
|
|
/* funcdef: 'def' NAME parameters ['->' test] ':' suite */
|
|
const node * const n = is_async ? CHILD(n0, 1) : n0;
|
|
identifier name;
|
|
arguments_ty args;
|
|
asdl_seq *body;
|
|
expr_ty returns = NULL;
|
|
int name_i = 1;
|
|
|
|
REQ(n, funcdef);
|
|
|
|
name = NEW_IDENTIFIER(CHILD(n, name_i));
|
|
if (!name)
|
|
return NULL;
|
|
if (forbidden_name(c, name, CHILD(n, name_i), 0))
|
|
return NULL;
|
|
args = ast_for_arguments(c, CHILD(n, name_i + 1));
|
|
if (!args)
|
|
return NULL;
|
|
if (TYPE(CHILD(n, name_i+2)) == RARROW) {
|
|
returns = ast_for_expr(c, CHILD(n, name_i + 3));
|
|
if (!returns)
|
|
return NULL;
|
|
name_i += 2;
|
|
}
|
|
body = ast_for_suite(c, CHILD(n, name_i + 3));
|
|
if (!body)
|
|
return NULL;
|
|
|
|
if (is_async)
|
|
return AsyncFunctionDef(name, args, body, decorator_seq, returns,
|
|
LINENO(n0), n0->n_col_offset, c->c_arena);
|
|
else
|
|
return FunctionDef(name, args, body, decorator_seq, returns,
|
|
LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_async_funcdef(struct compiling *c, const node *n, asdl_seq *decorator_seq)
|
|
{
|
|
/* async_funcdef: 'async' funcdef */
|
|
REQ(n, async_funcdef);
|
|
REQ(CHILD(n, 0), NAME);
|
|
assert(strcmp(STR(CHILD(n, 0)), "async") == 0);
|
|
REQ(CHILD(n, 1), funcdef);
|
|
|
|
return ast_for_funcdef_impl(c, n, decorator_seq,
|
|
true /* is_async */);
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_funcdef(struct compiling *c, const node *n, asdl_seq *decorator_seq)
|
|
{
|
|
/* funcdef: 'def' NAME parameters ['->' test] ':' suite */
|
|
return ast_for_funcdef_impl(c, n, decorator_seq,
|
|
false /* is_async */);
|
|
}
|
|
|
|
|
|
static stmt_ty
|
|
ast_for_async_stmt(struct compiling *c, const node *n)
|
|
{
|
|
/* async_stmt: 'async' (funcdef | with_stmt | for_stmt) */
|
|
REQ(n, async_stmt);
|
|
REQ(CHILD(n, 0), NAME);
|
|
assert(strcmp(STR(CHILD(n, 0)), "async") == 0);
|
|
|
|
switch (TYPE(CHILD(n, 1))) {
|
|
case funcdef:
|
|
return ast_for_funcdef_impl(c, n, NULL,
|
|
true /* is_async */);
|
|
case with_stmt:
|
|
return ast_for_with_stmt(c, n,
|
|
true /* is_async */);
|
|
|
|
case for_stmt:
|
|
return ast_for_for_stmt(c, n,
|
|
true /* is_async */);
|
|
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"invalid async stament: %s",
|
|
STR(CHILD(n, 1)));
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_decorated(struct compiling *c, const node *n)
|
|
{
|
|
/* decorated: decorators (classdef | funcdef | async_funcdef) */
|
|
stmt_ty thing = NULL;
|
|
asdl_seq *decorator_seq = NULL;
|
|
|
|
REQ(n, decorated);
|
|
|
|
decorator_seq = ast_for_decorators(c, CHILD(n, 0));
|
|
if (!decorator_seq)
|
|
return NULL;
|
|
|
|
assert(TYPE(CHILD(n, 1)) == funcdef ||
|
|
TYPE(CHILD(n, 1)) == async_funcdef ||
|
|
TYPE(CHILD(n, 1)) == classdef);
|
|
|
|
if (TYPE(CHILD(n, 1)) == funcdef) {
|
|
thing = ast_for_funcdef(c, CHILD(n, 1), decorator_seq);
|
|
} else if (TYPE(CHILD(n, 1)) == classdef) {
|
|
thing = ast_for_classdef(c, CHILD(n, 1), decorator_seq);
|
|
} else if (TYPE(CHILD(n, 1)) == async_funcdef) {
|
|
thing = ast_for_async_funcdef(c, CHILD(n, 1), decorator_seq);
|
|
}
|
|
/* we count the decorators in when talking about the class' or
|
|
* function's line number */
|
|
if (thing) {
|
|
thing->lineno = LINENO(n);
|
|
thing->col_offset = n->n_col_offset;
|
|
}
|
|
return thing;
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_lambdef(struct compiling *c, const node *n)
|
|
{
|
|
/* lambdef: 'lambda' [varargslist] ':' test
|
|
lambdef_nocond: 'lambda' [varargslist] ':' test_nocond */
|
|
arguments_ty args;
|
|
expr_ty expression;
|
|
|
|
if (NCH(n) == 3) {
|
|
args = arguments(NULL, NULL, NULL, NULL, NULL, NULL, c->c_arena);
|
|
if (!args)
|
|
return NULL;
|
|
expression = ast_for_expr(c, CHILD(n, 2));
|
|
if (!expression)
|
|
return NULL;
|
|
}
|
|
else {
|
|
args = ast_for_arguments(c, CHILD(n, 1));
|
|
if (!args)
|
|
return NULL;
|
|
expression = ast_for_expr(c, CHILD(n, 3));
|
|
if (!expression)
|
|
return NULL;
|
|
}
|
|
|
|
return Lambda(args, expression, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_ifexpr(struct compiling *c, const node *n)
|
|
{
|
|
/* test: or_test 'if' or_test 'else' test */
|
|
expr_ty expression, body, orelse;
|
|
|
|
assert(NCH(n) == 5);
|
|
body = ast_for_expr(c, CHILD(n, 0));
|
|
if (!body)
|
|
return NULL;
|
|
expression = ast_for_expr(c, CHILD(n, 2));
|
|
if (!expression)
|
|
return NULL;
|
|
orelse = ast_for_expr(c, CHILD(n, 4));
|
|
if (!orelse)
|
|
return NULL;
|
|
return IfExp(expression, body, orelse, LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
}
|
|
|
|
/*
|
|
Count the number of 'for' loops in a comprehension.
|
|
|
|
Helper for ast_for_comprehension().
|
|
*/
|
|
|
|
static int
|
|
count_comp_fors(struct compiling *c, const node *n)
|
|
{
|
|
int n_fors = 0;
|
|
|
|
count_comp_for:
|
|
n_fors++;
|
|
REQ(n, comp_for);
|
|
if (NCH(n) == 2) {
|
|
REQ(CHILD(n, 0), NAME);
|
|
assert(strcmp(STR(CHILD(n, 0)), "async") == 0);
|
|
n = CHILD(n, 1);
|
|
}
|
|
else if (NCH(n) == 1) {
|
|
n = CHILD(n, 0);
|
|
}
|
|
else {
|
|
goto error;
|
|
}
|
|
if (NCH(n) == (5)) {
|
|
n = CHILD(n, 4);
|
|
}
|
|
else {
|
|
return n_fors;
|
|
}
|
|
count_comp_iter:
|
|
REQ(n, comp_iter);
|
|
n = CHILD(n, 0);
|
|
if (TYPE(n) == comp_for)
|
|
goto count_comp_for;
|
|
else if (TYPE(n) == comp_if) {
|
|
if (NCH(n) == 3) {
|
|
n = CHILD(n, 2);
|
|
goto count_comp_iter;
|
|
}
|
|
else
|
|
return n_fors;
|
|
}
|
|
|
|
error:
|
|
/* Should never be reached */
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"logic error in count_comp_fors");
|
|
return -1;
|
|
}
|
|
|
|
/* Count the number of 'if' statements in a comprehension.
|
|
|
|
Helper for ast_for_comprehension().
|
|
*/
|
|
|
|
static int
|
|
count_comp_ifs(struct compiling *c, const node *n)
|
|
{
|
|
int n_ifs = 0;
|
|
|
|
while (1) {
|
|
REQ(n, comp_iter);
|
|
if (TYPE(CHILD(n, 0)) == comp_for)
|
|
return n_ifs;
|
|
n = CHILD(n, 0);
|
|
REQ(n, comp_if);
|
|
n_ifs++;
|
|
if (NCH(n) == 2)
|
|
return n_ifs;
|
|
n = CHILD(n, 2);
|
|
}
|
|
}
|
|
|
|
static asdl_seq *
|
|
ast_for_comprehension(struct compiling *c, const node *n)
|
|
{
|
|
int i, n_fors;
|
|
asdl_seq *comps;
|
|
|
|
n_fors = count_comp_fors(c, n);
|
|
if (n_fors == -1)
|
|
return NULL;
|
|
|
|
comps = _Py_asdl_seq_new(n_fors, c->c_arena);
|
|
if (!comps)
|
|
return NULL;
|
|
|
|
for (i = 0; i < n_fors; i++) {
|
|
comprehension_ty comp;
|
|
asdl_seq *t;
|
|
expr_ty expression, first;
|
|
node *for_ch;
|
|
node *sync_n;
|
|
int is_async = 0;
|
|
|
|
REQ(n, comp_for);
|
|
|
|
if (NCH(n) == 2) {
|
|
is_async = 1;
|
|
REQ(CHILD(n, 0), NAME);
|
|
assert(strcmp(STR(CHILD(n, 0)), "async") == 0);
|
|
sync_n = CHILD(n, 1);
|
|
}
|
|
else {
|
|
sync_n = CHILD(n, 0);
|
|
}
|
|
REQ(sync_n, sync_comp_for);
|
|
|
|
for_ch = CHILD(sync_n, 1);
|
|
t = ast_for_exprlist(c, for_ch, Store);
|
|
if (!t)
|
|
return NULL;
|
|
expression = ast_for_expr(c, CHILD(sync_n, 3));
|
|
if (!expression)
|
|
return NULL;
|
|
|
|
/* Check the # of children rather than the length of t, since
|
|
(x for x, in ...) has 1 element in t, but still requires a Tuple. */
|
|
first = (expr_ty)asdl_seq_GET(t, 0);
|
|
if (NCH(for_ch) == 1)
|
|
comp = comprehension(first, expression, NULL,
|
|
is_async, c->c_arena);
|
|
else
|
|
comp = comprehension(Tuple(t, Store, first->lineno,
|
|
first->col_offset, c->c_arena),
|
|
expression, NULL, is_async, c->c_arena);
|
|
if (!comp)
|
|
return NULL;
|
|
|
|
if (NCH(sync_n) == 5) {
|
|
int j, n_ifs;
|
|
asdl_seq *ifs;
|
|
|
|
n = CHILD(sync_n, 4);
|
|
n_ifs = count_comp_ifs(c, n);
|
|
if (n_ifs == -1)
|
|
return NULL;
|
|
|
|
ifs = _Py_asdl_seq_new(n_ifs, c->c_arena);
|
|
if (!ifs)
|
|
return NULL;
|
|
|
|
for (j = 0; j < n_ifs; j++) {
|
|
REQ(n, comp_iter);
|
|
n = CHILD(n, 0);
|
|
REQ(n, comp_if);
|
|
|
|
expression = ast_for_expr(c, CHILD(n, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
asdl_seq_SET(ifs, j, expression);
|
|
if (NCH(n) == 3)
|
|
n = CHILD(n, 2);
|
|
}
|
|
/* on exit, must guarantee that n is a comp_for */
|
|
if (TYPE(n) == comp_iter)
|
|
n = CHILD(n, 0);
|
|
comp->ifs = ifs;
|
|
}
|
|
asdl_seq_SET(comps, i, comp);
|
|
}
|
|
return comps;
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_itercomp(struct compiling *c, const node *n, int type)
|
|
{
|
|
/* testlist_comp: (test|star_expr)
|
|
* ( comp_for | (',' (test|star_expr))* [','] ) */
|
|
expr_ty elt;
|
|
asdl_seq *comps;
|
|
node *ch;
|
|
|
|
assert(NCH(n) > 1);
|
|
|
|
ch = CHILD(n, 0);
|
|
elt = ast_for_expr(c, ch);
|
|
if (!elt)
|
|
return NULL;
|
|
if (elt->kind == Starred_kind) {
|
|
ast_error(c, ch, "iterable unpacking cannot be used in comprehension");
|
|
return NULL;
|
|
}
|
|
|
|
comps = ast_for_comprehension(c, CHILD(n, 1));
|
|
if (!comps)
|
|
return NULL;
|
|
|
|
if (type == COMP_GENEXP)
|
|
return GeneratorExp(elt, comps, LINENO(n), n->n_col_offset, c->c_arena);
|
|
else if (type == COMP_LISTCOMP)
|
|
return ListComp(elt, comps, LINENO(n), n->n_col_offset, c->c_arena);
|
|
else if (type == COMP_SETCOMP)
|
|
return SetComp(elt, comps, LINENO(n), n->n_col_offset, c->c_arena);
|
|
else
|
|
/* Should never happen */
|
|
return NULL;
|
|
}
|
|
|
|
/* Fills in the key, value pair corresponding to the dict element. In case
|
|
* of an unpacking, key is NULL. *i is advanced by the number of ast
|
|
* elements. Iff successful, nonzero is returned.
|
|
*/
|
|
static int
|
|
ast_for_dictelement(struct compiling *c, const node *n, int *i,
|
|
expr_ty *key, expr_ty *value)
|
|
{
|
|
expr_ty expression;
|
|
if (TYPE(CHILD(n, *i)) == DOUBLESTAR) {
|
|
assert(NCH(n) - *i >= 2);
|
|
|
|
expression = ast_for_expr(c, CHILD(n, *i + 1));
|
|
if (!expression)
|
|
return 0;
|
|
*key = NULL;
|
|
*value = expression;
|
|
|
|
*i += 2;
|
|
}
|
|
else {
|
|
assert(NCH(n) - *i >= 3);
|
|
|
|
expression = ast_for_expr(c, CHILD(n, *i));
|
|
if (!expression)
|
|
return 0;
|
|
*key = expression;
|
|
|
|
REQ(CHILD(n, *i + 1), COLON);
|
|
|
|
expression = ast_for_expr(c, CHILD(n, *i + 2));
|
|
if (!expression)
|
|
return 0;
|
|
*value = expression;
|
|
|
|
*i += 3;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_dictcomp(struct compiling *c, const node *n)
|
|
{
|
|
expr_ty key, value;
|
|
asdl_seq *comps;
|
|
int i = 0;
|
|
|
|
if (!ast_for_dictelement(c, n, &i, &key, &value))
|
|
return NULL;
|
|
assert(key);
|
|
assert(NCH(n) - i >= 1);
|
|
|
|
comps = ast_for_comprehension(c, CHILD(n, i));
|
|
if (!comps)
|
|
return NULL;
|
|
|
|
return DictComp(key, value, comps, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_dictdisplay(struct compiling *c, const node *n)
|
|
{
|
|
int i;
|
|
int j;
|
|
int size;
|
|
asdl_seq *keys, *values;
|
|
|
|
size = (NCH(n) + 1) / 3; /* +1 in case no trailing comma */
|
|
keys = _Py_asdl_seq_new(size, c->c_arena);
|
|
if (!keys)
|
|
return NULL;
|
|
|
|
values = _Py_asdl_seq_new(size, c->c_arena);
|
|
if (!values)
|
|
return NULL;
|
|
|
|
j = 0;
|
|
for (i = 0; i < NCH(n); i++) {
|
|
expr_ty key, value;
|
|
|
|
if (!ast_for_dictelement(c, n, &i, &key, &value))
|
|
return NULL;
|
|
asdl_seq_SET(keys, j, key);
|
|
asdl_seq_SET(values, j, value);
|
|
|
|
j++;
|
|
}
|
|
keys->size = j;
|
|
values->size = j;
|
|
return Dict(keys, values, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_genexp(struct compiling *c, const node *n)
|
|
{
|
|
assert(TYPE(n) == (testlist_comp) || TYPE(n) == (argument));
|
|
return ast_for_itercomp(c, n, COMP_GENEXP);
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_listcomp(struct compiling *c, const node *n)
|
|
{
|
|
assert(TYPE(n) == (testlist_comp));
|
|
return ast_for_itercomp(c, n, COMP_LISTCOMP);
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_setcomp(struct compiling *c, const node *n)
|
|
{
|
|
assert(TYPE(n) == (dictorsetmaker));
|
|
return ast_for_itercomp(c, n, COMP_SETCOMP);
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_setdisplay(struct compiling *c, const node *n)
|
|
{
|
|
int i;
|
|
int size;
|
|
asdl_seq *elts;
|
|
|
|
assert(TYPE(n) == (dictorsetmaker));
|
|
size = (NCH(n) + 1) / 2; /* +1 in case no trailing comma */
|
|
elts = _Py_asdl_seq_new(size, c->c_arena);
|
|
if (!elts)
|
|
return NULL;
|
|
for (i = 0; i < NCH(n); i += 2) {
|
|
expr_ty expression;
|
|
expression = ast_for_expr(c, CHILD(n, i));
|
|
if (!expression)
|
|
return NULL;
|
|
asdl_seq_SET(elts, i / 2, expression);
|
|
}
|
|
return Set(elts, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_atom(struct compiling *c, const node *n)
|
|
{
|
|
/* atom: '(' [yield_expr|testlist_comp] ')' | '[' [testlist_comp] ']'
|
|
| '{' [dictmaker|testlist_comp] '}' | NAME | NUMBER | STRING+
|
|
| '...' | 'None' | 'True' | 'False'
|
|
*/
|
|
node *ch = CHILD(n, 0);
|
|
|
|
switch (TYPE(ch)) {
|
|
case NAME: {
|
|
PyObject *name;
|
|
const char *s = STR(ch);
|
|
size_t len = strlen(s);
|
|
if (len >= 4 && len <= 5) {
|
|
if (!strcmp(s, "None"))
|
|
return NameConstant(Py_None, LINENO(n), n->n_col_offset, c->c_arena);
|
|
if (!strcmp(s, "True"))
|
|
return NameConstant(Py_True, LINENO(n), n->n_col_offset, c->c_arena);
|
|
if (!strcmp(s, "False"))
|
|
return NameConstant(Py_False, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
name = new_identifier(s, c);
|
|
if (!name)
|
|
return NULL;
|
|
/* All names start in Load context, but may later be changed. */
|
|
return Name(name, Load, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
case STRING: {
|
|
expr_ty str = parsestrplus(c, n);
|
|
if (!str) {
|
|
const char *errtype = NULL;
|
|
if (PyErr_ExceptionMatches(PyExc_UnicodeError))
|
|
errtype = "unicode error";
|
|
else if (PyErr_ExceptionMatches(PyExc_ValueError))
|
|
errtype = "value error";
|
|
if (errtype) {
|
|
char buf[128];
|
|
const char *s = NULL;
|
|
PyObject *type, *value, *tback, *errstr;
|
|
PyErr_Fetch(&type, &value, &tback);
|
|
errstr = PyObject_Str(value);
|
|
if (errstr)
|
|
s = PyUnicode_AsUTF8(errstr);
|
|
if (s) {
|
|
PyOS_snprintf(buf, sizeof(buf), "(%s) %s", errtype, s);
|
|
} else {
|
|
PyErr_Clear();
|
|
PyOS_snprintf(buf, sizeof(buf), "(%s) unknown error", errtype);
|
|
}
|
|
Py_XDECREF(errstr);
|
|
ast_error(c, n, buf);
|
|
Py_DECREF(type);
|
|
Py_XDECREF(value);
|
|
Py_XDECREF(tback);
|
|
}
|
|
return NULL;
|
|
}
|
|
return str;
|
|
}
|
|
case NUMBER: {
|
|
PyObject *pynum = parsenumber(c, STR(ch));
|
|
if (!pynum)
|
|
return NULL;
|
|
|
|
if (PyArena_AddPyObject(c->c_arena, pynum) < 0) {
|
|
Py_DECREF(pynum);
|
|
return NULL;
|
|
}
|
|
return Num(pynum, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
case ELLIPSIS: /* Ellipsis */
|
|
return Ellipsis(LINENO(n), n->n_col_offset, c->c_arena);
|
|
case LPAR: /* some parenthesized expressions */
|
|
ch = CHILD(n, 1);
|
|
|
|
if (TYPE(ch) == RPAR)
|
|
return Tuple(NULL, Load, LINENO(n), n->n_col_offset, c->c_arena);
|
|
|
|
if (TYPE(ch) == yield_expr)
|
|
return ast_for_expr(c, ch);
|
|
|
|
/* testlist_comp: test ( comp_for | (',' test)* [','] ) */
|
|
if ((NCH(ch) > 1) && (TYPE(CHILD(ch, 1)) == comp_for))
|
|
return ast_for_genexp(c, ch);
|
|
|
|
return ast_for_testlist(c, ch);
|
|
case LSQB: /* list (or list comprehension) */
|
|
ch = CHILD(n, 1);
|
|
|
|
if (TYPE(ch) == RSQB)
|
|
return List(NULL, Load, LINENO(n), n->n_col_offset, c->c_arena);
|
|
|
|
REQ(ch, testlist_comp);
|
|
if (NCH(ch) == 1 || TYPE(CHILD(ch, 1)) == COMMA) {
|
|
asdl_seq *elts = seq_for_testlist(c, ch);
|
|
if (!elts)
|
|
return NULL;
|
|
|
|
return List(elts, Load, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
else
|
|
return ast_for_listcomp(c, ch);
|
|
case LBRACE: {
|
|
/* dictorsetmaker: ( ((test ':' test | '**' test)
|
|
* (comp_for | (',' (test ':' test | '**' test))* [','])) |
|
|
* ((test | '*' test)
|
|
* (comp_for | (',' (test | '*' test))* [','])) ) */
|
|
expr_ty res;
|
|
ch = CHILD(n, 1);
|
|
if (TYPE(ch) == RBRACE) {
|
|
/* It's an empty dict. */
|
|
return Dict(NULL, NULL, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
else {
|
|
int is_dict = (TYPE(CHILD(ch, 0)) == DOUBLESTAR);
|
|
if (NCH(ch) == 1 ||
|
|
(NCH(ch) > 1 &&
|
|
TYPE(CHILD(ch, 1)) == COMMA)) {
|
|
/* It's a set display. */
|
|
res = ast_for_setdisplay(c, ch);
|
|
}
|
|
else if (NCH(ch) > 1 &&
|
|
TYPE(CHILD(ch, 1)) == comp_for) {
|
|
/* It's a set comprehension. */
|
|
res = ast_for_setcomp(c, ch);
|
|
}
|
|
else if (NCH(ch) > 3 - is_dict &&
|
|
TYPE(CHILD(ch, 3 - is_dict)) == comp_for) {
|
|
/* It's a dictionary comprehension. */
|
|
if (is_dict) {
|
|
ast_error(c, n, "dict unpacking cannot be used in "
|
|
"dict comprehension");
|
|
return NULL;
|
|
}
|
|
res = ast_for_dictcomp(c, ch);
|
|
}
|
|
else {
|
|
/* It's a dictionary display. */
|
|
res = ast_for_dictdisplay(c, ch);
|
|
}
|
|
if (res) {
|
|
res->lineno = LINENO(n);
|
|
res->col_offset = n->n_col_offset;
|
|
}
|
|
return res;
|
|
}
|
|
}
|
|
default:
|
|
PyErr_Format(PyExc_SystemError, "unhandled atom %d", TYPE(ch));
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static slice_ty
|
|
ast_for_slice(struct compiling *c, const node *n)
|
|
{
|
|
node *ch;
|
|
expr_ty lower = NULL, upper = NULL, step = NULL;
|
|
|
|
REQ(n, subscript);
|
|
|
|
/*
|
|
subscript: test | [test] ':' [test] [sliceop]
|
|
sliceop: ':' [test]
|
|
*/
|
|
ch = CHILD(n, 0);
|
|
if (NCH(n) == 1 && TYPE(ch) == test) {
|
|
/* 'step' variable hold no significance in terms of being used over
|
|
other vars */
|
|
step = ast_for_expr(c, ch);
|
|
if (!step)
|
|
return NULL;
|
|
|
|
return Index(step, c->c_arena);
|
|
}
|
|
|
|
if (TYPE(ch) == test) {
|
|
lower = ast_for_expr(c, ch);
|
|
if (!lower)
|
|
return NULL;
|
|
}
|
|
|
|
/* If there's an upper bound it's in the second or third position. */
|
|
if (TYPE(ch) == COLON) {
|
|
if (NCH(n) > 1) {
|
|
node *n2 = CHILD(n, 1);
|
|
|
|
if (TYPE(n2) == test) {
|
|
upper = ast_for_expr(c, n2);
|
|
if (!upper)
|
|
return NULL;
|
|
}
|
|
}
|
|
} else if (NCH(n) > 2) {
|
|
node *n2 = CHILD(n, 2);
|
|
|
|
if (TYPE(n2) == test) {
|
|
upper = ast_for_expr(c, n2);
|
|
if (!upper)
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ch = CHILD(n, NCH(n) - 1);
|
|
if (TYPE(ch) == sliceop) {
|
|
if (NCH(ch) != 1) {
|
|
ch = CHILD(ch, 1);
|
|
if (TYPE(ch) == test) {
|
|
step = ast_for_expr(c, ch);
|
|
if (!step)
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Slice(lower, upper, step, c->c_arena);
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_binop(struct compiling *c, const node *n)
|
|
{
|
|
/* Must account for a sequence of expressions.
|
|
How should A op B op C by represented?
|
|
BinOp(BinOp(A, op, B), op, C).
|
|
*/
|
|
|
|
int i, nops;
|
|
expr_ty expr1, expr2, result;
|
|
operator_ty newoperator;
|
|
|
|
expr1 = ast_for_expr(c, CHILD(n, 0));
|
|
if (!expr1)
|
|
return NULL;
|
|
|
|
expr2 = ast_for_expr(c, CHILD(n, 2));
|
|
if (!expr2)
|
|
return NULL;
|
|
|
|
newoperator = get_operator(CHILD(n, 1));
|
|
if (!newoperator)
|
|
return NULL;
|
|
|
|
result = BinOp(expr1, newoperator, expr2, LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
if (!result)
|
|
return NULL;
|
|
|
|
nops = (NCH(n) - 1) / 2;
|
|
for (i = 1; i < nops; i++) {
|
|
expr_ty tmp_result, tmp;
|
|
const node* next_oper = CHILD(n, i * 2 + 1);
|
|
|
|
newoperator = get_operator(next_oper);
|
|
if (!newoperator)
|
|
return NULL;
|
|
|
|
tmp = ast_for_expr(c, CHILD(n, i * 2 + 2));
|
|
if (!tmp)
|
|
return NULL;
|
|
|
|
tmp_result = BinOp(result, newoperator, tmp,
|
|
LINENO(next_oper), next_oper->n_col_offset,
|
|
c->c_arena);
|
|
if (!tmp_result)
|
|
return NULL;
|
|
result = tmp_result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_trailer(struct compiling *c, const node *n, expr_ty left_expr)
|
|
{
|
|
/* trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
|
|
subscriptlist: subscript (',' subscript)* [',']
|
|
subscript: '.' '.' '.' | test | [test] ':' [test] [sliceop]
|
|
*/
|
|
REQ(n, trailer);
|
|
if (TYPE(CHILD(n, 0)) == LPAR) {
|
|
if (NCH(n) == 2)
|
|
return Call(left_expr, NULL, NULL, LINENO(n),
|
|
n->n_col_offset, c->c_arena);
|
|
else
|
|
return ast_for_call(c, CHILD(n, 1), left_expr, true);
|
|
}
|
|
else if (TYPE(CHILD(n, 0)) == DOT) {
|
|
PyObject *attr_id = NEW_IDENTIFIER(CHILD(n, 1));
|
|
if (!attr_id)
|
|
return NULL;
|
|
return Attribute(left_expr, attr_id, Load,
|
|
LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
else {
|
|
REQ(CHILD(n, 0), LSQB);
|
|
REQ(CHILD(n, 2), RSQB);
|
|
n = CHILD(n, 1);
|
|
if (NCH(n) == 1) {
|
|
slice_ty slc = ast_for_slice(c, CHILD(n, 0));
|
|
if (!slc)
|
|
return NULL;
|
|
return Subscript(left_expr, slc, Load, LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
}
|
|
else {
|
|
/* The grammar is ambiguous here. The ambiguity is resolved
|
|
by treating the sequence as a tuple literal if there are
|
|
no slice features.
|
|
*/
|
|
int j;
|
|
slice_ty slc;
|
|
expr_ty e;
|
|
int simple = 1;
|
|
asdl_seq *slices, *elts;
|
|
slices = _Py_asdl_seq_new((NCH(n) + 1) / 2, c->c_arena);
|
|
if (!slices)
|
|
return NULL;
|
|
for (j = 0; j < NCH(n); j += 2) {
|
|
slc = ast_for_slice(c, CHILD(n, j));
|
|
if (!slc)
|
|
return NULL;
|
|
if (slc->kind != Index_kind)
|
|
simple = 0;
|
|
asdl_seq_SET(slices, j / 2, slc);
|
|
}
|
|
if (!simple) {
|
|
return Subscript(left_expr, ExtSlice(slices, c->c_arena),
|
|
Load, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
/* extract Index values and put them in a Tuple */
|
|
elts = _Py_asdl_seq_new(asdl_seq_LEN(slices), c->c_arena);
|
|
if (!elts)
|
|
return NULL;
|
|
for (j = 0; j < asdl_seq_LEN(slices); ++j) {
|
|
slc = (slice_ty)asdl_seq_GET(slices, j);
|
|
assert(slc->kind == Index_kind && slc->v.Index.value);
|
|
asdl_seq_SET(elts, j, slc->v.Index.value);
|
|
}
|
|
e = Tuple(elts, Load, LINENO(n), n->n_col_offset, c->c_arena);
|
|
if (!e)
|
|
return NULL;
|
|
return Subscript(left_expr, Index(e, c->c_arena),
|
|
Load, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
}
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_factor(struct compiling *c, const node *n)
|
|
{
|
|
expr_ty expression;
|
|
|
|
expression = ast_for_expr(c, CHILD(n, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
|
|
switch (TYPE(CHILD(n, 0))) {
|
|
case PLUS:
|
|
return UnaryOp(UAdd, expression, LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
case MINUS:
|
|
return UnaryOp(USub, expression, LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
case TILDE:
|
|
return UnaryOp(Invert, expression, LINENO(n),
|
|
n->n_col_offset, c->c_arena);
|
|
}
|
|
PyErr_Format(PyExc_SystemError, "unhandled factor: %d",
|
|
TYPE(CHILD(n, 0)));
|
|
return NULL;
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_atom_expr(struct compiling *c, const node *n)
|
|
{
|
|
int i, nch, start = 0;
|
|
expr_ty e, tmp;
|
|
|
|
REQ(n, atom_expr);
|
|
nch = NCH(n);
|
|
|
|
if (TYPE(CHILD(n, 0)) == NAME && strcmp(STR(CHILD(n, 0)), "await") == 0) {
|
|
start = 1;
|
|
assert(nch > 1);
|
|
}
|
|
|
|
e = ast_for_atom(c, CHILD(n, start));
|
|
if (!e)
|
|
return NULL;
|
|
if (nch == 1)
|
|
return e;
|
|
if (start && nch == 2) {
|
|
return Await(e, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
for (i = start + 1; i < nch; i++) {
|
|
node *ch = CHILD(n, i);
|
|
if (TYPE(ch) != trailer)
|
|
break;
|
|
tmp = ast_for_trailer(c, ch, e);
|
|
if (!tmp)
|
|
return NULL;
|
|
tmp->lineno = e->lineno;
|
|
tmp->col_offset = e->col_offset;
|
|
e = tmp;
|
|
}
|
|
|
|
if (start) {
|
|
/* there was an 'await' */
|
|
return Await(e, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
else {
|
|
return e;
|
|
}
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_power(struct compiling *c, const node *n)
|
|
{
|
|
/* power: atom trailer* ('**' factor)*
|
|
*/
|
|
expr_ty e;
|
|
REQ(n, power);
|
|
e = ast_for_atom_expr(c, CHILD(n, 0));
|
|
if (!e)
|
|
return NULL;
|
|
if (NCH(n) == 1)
|
|
return e;
|
|
if (TYPE(CHILD(n, NCH(n) - 1)) == factor) {
|
|
expr_ty f = ast_for_expr(c, CHILD(n, NCH(n) - 1));
|
|
if (!f)
|
|
return NULL;
|
|
e = BinOp(e, Pow, f, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_starred(struct compiling *c, const node *n)
|
|
{
|
|
expr_ty tmp;
|
|
REQ(n, star_expr);
|
|
|
|
tmp = ast_for_expr(c, CHILD(n, 1));
|
|
if (!tmp)
|
|
return NULL;
|
|
|
|
/* The Load context is changed later. */
|
|
return Starred(tmp, Load, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
|
|
/* Do not name a variable 'expr'! Will cause a compile error.
|
|
*/
|
|
|
|
static expr_ty
|
|
ast_for_expr(struct compiling *c, const node *n)
|
|
{
|
|
/* handle the full range of simple expressions
|
|
test: or_test ['if' or_test 'else' test] | lambdef
|
|
test_nocond: or_test | lambdef_nocond
|
|
or_test: and_test ('or' and_test)*
|
|
and_test: not_test ('and' not_test)*
|
|
not_test: 'not' not_test | comparison
|
|
comparison: expr (comp_op expr)*
|
|
expr: xor_expr ('|' xor_expr)*
|
|
xor_expr: and_expr ('^' and_expr)*
|
|
and_expr: shift_expr ('&' shift_expr)*
|
|
shift_expr: arith_expr (('<<'|'>>') arith_expr)*
|
|
arith_expr: term (('+'|'-') term)*
|
|
term: factor (('*'|'@'|'/'|'%'|'//') factor)*
|
|
factor: ('+'|'-'|'~') factor | power
|
|
power: atom_expr ['**' factor]
|
|
atom_expr: ['await'] atom trailer*
|
|
yield_expr: 'yield' [yield_arg]
|
|
*/
|
|
|
|
asdl_seq *seq;
|
|
int i;
|
|
|
|
loop:
|
|
switch (TYPE(n)) {
|
|
case test:
|
|
case test_nocond:
|
|
if (TYPE(CHILD(n, 0)) == lambdef ||
|
|
TYPE(CHILD(n, 0)) == lambdef_nocond)
|
|
return ast_for_lambdef(c, CHILD(n, 0));
|
|
else if (NCH(n) > 1)
|
|
return ast_for_ifexpr(c, n);
|
|
/* Fallthrough */
|
|
case or_test:
|
|
case and_test:
|
|
if (NCH(n) == 1) {
|
|
n = CHILD(n, 0);
|
|
goto loop;
|
|
}
|
|
seq = _Py_asdl_seq_new((NCH(n) + 1) / 2, c->c_arena);
|
|
if (!seq)
|
|
return NULL;
|
|
for (i = 0; i < NCH(n); i += 2) {
|
|
expr_ty e = ast_for_expr(c, CHILD(n, i));
|
|
if (!e)
|
|
return NULL;
|
|
asdl_seq_SET(seq, i / 2, e);
|
|
}
|
|
if (!strcmp(STR(CHILD(n, 1)), "and"))
|
|
return BoolOp(And, seq, LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
assert(!strcmp(STR(CHILD(n, 1)), "or"));
|
|
return BoolOp(Or, seq, LINENO(n), n->n_col_offset, c->c_arena);
|
|
case not_test:
|
|
if (NCH(n) == 1) {
|
|
n = CHILD(n, 0);
|
|
goto loop;
|
|
}
|
|
else {
|
|
expr_ty expression = ast_for_expr(c, CHILD(n, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
|
|
return UnaryOp(Not, expression, LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
}
|
|
case comparison:
|
|
if (NCH(n) == 1) {
|
|
n = CHILD(n, 0);
|
|
goto loop;
|
|
}
|
|
else {
|
|
expr_ty expression;
|
|
asdl_int_seq *ops;
|
|
asdl_seq *cmps;
|
|
ops = _Py_asdl_int_seq_new(NCH(n) / 2, c->c_arena);
|
|
if (!ops)
|
|
return NULL;
|
|
cmps = _Py_asdl_seq_new(NCH(n) / 2, c->c_arena);
|
|
if (!cmps) {
|
|
return NULL;
|
|
}
|
|
for (i = 1; i < NCH(n); i += 2) {
|
|
cmpop_ty newoperator;
|
|
|
|
newoperator = ast_for_comp_op(c, CHILD(n, i));
|
|
if (!newoperator) {
|
|
return NULL;
|
|
}
|
|
|
|
expression = ast_for_expr(c, CHILD(n, i + 1));
|
|
if (!expression) {
|
|
return NULL;
|
|
}
|
|
|
|
asdl_seq_SET(ops, i / 2, newoperator);
|
|
asdl_seq_SET(cmps, i / 2, expression);
|
|
}
|
|
expression = ast_for_expr(c, CHILD(n, 0));
|
|
if (!expression) {
|
|
return NULL;
|
|
}
|
|
|
|
return Compare(expression, ops, cmps, LINENO(n),
|
|
n->n_col_offset, c->c_arena);
|
|
}
|
|
break;
|
|
|
|
case star_expr:
|
|
return ast_for_starred(c, n);
|
|
/* The next five cases all handle BinOps. The main body of code
|
|
is the same in each case, but the switch turned inside out to
|
|
reuse the code for each type of operator.
|
|
*/
|
|
case expr:
|
|
case xor_expr:
|
|
case and_expr:
|
|
case shift_expr:
|
|
case arith_expr:
|
|
case term:
|
|
if (NCH(n) == 1) {
|
|
n = CHILD(n, 0);
|
|
goto loop;
|
|
}
|
|
return ast_for_binop(c, n);
|
|
case yield_expr: {
|
|
node *an = NULL;
|
|
node *en = NULL;
|
|
int is_from = 0;
|
|
expr_ty exp = NULL;
|
|
if (NCH(n) > 1)
|
|
an = CHILD(n, 1); /* yield_arg */
|
|
if (an) {
|
|
en = CHILD(an, NCH(an) - 1);
|
|
if (NCH(an) == 2) {
|
|
is_from = 1;
|
|
exp = ast_for_expr(c, en);
|
|
}
|
|
else
|
|
exp = ast_for_testlist(c, en);
|
|
if (!exp)
|
|
return NULL;
|
|
}
|
|
if (is_from)
|
|
return YieldFrom(exp, LINENO(n), n->n_col_offset, c->c_arena);
|
|
return Yield(exp, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
case factor:
|
|
if (NCH(n) == 1) {
|
|
n = CHILD(n, 0);
|
|
goto loop;
|
|
}
|
|
return ast_for_factor(c, n);
|
|
case power:
|
|
return ast_for_power(c, n);
|
|
default:
|
|
PyErr_Format(PyExc_SystemError, "unhandled expr: %d", TYPE(n));
|
|
return NULL;
|
|
}
|
|
/* should never get here unless if error is set */
|
|
return NULL;
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_call(struct compiling *c, const node *n, expr_ty func, bool allowgen)
|
|
{
|
|
/*
|
|
arglist: argument (',' argument)* [',']
|
|
argument: ( test [comp_for] | '*' test | test '=' test | '**' test )
|
|
*/
|
|
|
|
int i, nargs, nkeywords;
|
|
int ndoublestars;
|
|
asdl_seq *args;
|
|
asdl_seq *keywords;
|
|
|
|
REQ(n, arglist);
|
|
|
|
nargs = 0;
|
|
nkeywords = 0;
|
|
for (i = 0; i < NCH(n); i++) {
|
|
node *ch = CHILD(n, i);
|
|
if (TYPE(ch) == argument) {
|
|
if (NCH(ch) == 1)
|
|
nargs++;
|
|
else if (TYPE(CHILD(ch, 1)) == comp_for) {
|
|
nargs++;
|
|
if (!allowgen) {
|
|
ast_error(c, ch, "invalid syntax");
|
|
return NULL;
|
|
}
|
|
if (NCH(n) > 1) {
|
|
ast_error(c, ch, "Generator expression must be parenthesized");
|
|
return NULL;
|
|
}
|
|
}
|
|
else if (TYPE(CHILD(ch, 0)) == STAR)
|
|
nargs++;
|
|
else
|
|
/* TYPE(CHILD(ch, 0)) == DOUBLESTAR or keyword argument */
|
|
nkeywords++;
|
|
}
|
|
}
|
|
|
|
args = _Py_asdl_seq_new(nargs, c->c_arena);
|
|
if (!args)
|
|
return NULL;
|
|
keywords = _Py_asdl_seq_new(nkeywords, c->c_arena);
|
|
if (!keywords)
|
|
return NULL;
|
|
|
|
nargs = 0; /* positional arguments + iterable argument unpackings */
|
|
nkeywords = 0; /* keyword arguments + keyword argument unpackings */
|
|
ndoublestars = 0; /* just keyword argument unpackings */
|
|
for (i = 0; i < NCH(n); i++) {
|
|
node *ch = CHILD(n, i);
|
|
if (TYPE(ch) == argument) {
|
|
expr_ty e;
|
|
node *chch = CHILD(ch, 0);
|
|
if (NCH(ch) == 1) {
|
|
/* a positional argument */
|
|
if (nkeywords) {
|
|
if (ndoublestars) {
|
|
ast_error(c, chch,
|
|
"positional argument follows "
|
|
"keyword argument unpacking");
|
|
}
|
|
else {
|
|
ast_error(c, chch,
|
|
"positional argument follows "
|
|
"keyword argument");
|
|
}
|
|
return NULL;
|
|
}
|
|
e = ast_for_expr(c, chch);
|
|
if (!e)
|
|
return NULL;
|
|
asdl_seq_SET(args, nargs++, e);
|
|
}
|
|
else if (TYPE(chch) == STAR) {
|
|
/* an iterable argument unpacking */
|
|
expr_ty starred;
|
|
if (ndoublestars) {
|
|
ast_error(c, chch,
|
|
"iterable argument unpacking follows "
|
|
"keyword argument unpacking");
|
|
return NULL;
|
|
}
|
|
e = ast_for_expr(c, CHILD(ch, 1));
|
|
if (!e)
|
|
return NULL;
|
|
starred = Starred(e, Load, LINENO(chch),
|
|
chch->n_col_offset,
|
|
c->c_arena);
|
|
if (!starred)
|
|
return NULL;
|
|
asdl_seq_SET(args, nargs++, starred);
|
|
|
|
}
|
|
else if (TYPE(chch) == DOUBLESTAR) {
|
|
/* a keyword argument unpacking */
|
|
keyword_ty kw;
|
|
i++;
|
|
e = ast_for_expr(c, CHILD(ch, 1));
|
|
if (!e)
|
|
return NULL;
|
|
kw = keyword(NULL, e, c->c_arena);
|
|
asdl_seq_SET(keywords, nkeywords++, kw);
|
|
ndoublestars++;
|
|
}
|
|
else if (TYPE(CHILD(ch, 1)) == comp_for) {
|
|
/* the lone generator expression */
|
|
e = ast_for_genexp(c, ch);
|
|
if (!e)
|
|
return NULL;
|
|
asdl_seq_SET(args, nargs++, e);
|
|
}
|
|
else {
|
|
/* a keyword argument */
|
|
keyword_ty kw;
|
|
identifier key, tmp;
|
|
int k;
|
|
|
|
// To remain LL(1), the grammar accepts any test (basically, any
|
|
// expression) in the keyword slot of a call site. So, we need
|
|
// to manually enforce that the keyword is a NAME here.
|
|
static const int name_tree[] = {
|
|
test,
|
|
or_test,
|
|
and_test,
|
|
not_test,
|
|
comparison,
|
|
expr,
|
|
xor_expr,
|
|
and_expr,
|
|
shift_expr,
|
|
arith_expr,
|
|
term,
|
|
factor,
|
|
power,
|
|
atom_expr,
|
|
atom,
|
|
0,
|
|
};
|
|
node *expr_node = chch;
|
|
for (int i = 0; name_tree[i]; i++) {
|
|
if (TYPE(expr_node) != name_tree[i])
|
|
break;
|
|
if (NCH(expr_node) != 1)
|
|
break;
|
|
expr_node = CHILD(expr_node, 0);
|
|
}
|
|
if (TYPE(expr_node) == lambdef) {
|
|
// f(lambda x: x[0] = 3) ends up getting parsed with LHS
|
|
// test = lambda x: x[0], and RHS test = 3. Issue #132313
|
|
// points out that complaining about a keyword then is very
|
|
// confusing.
|
|
ast_error(c, chch,
|
|
"lambda cannot contain assignment");
|
|
return NULL;
|
|
}
|
|
else if (TYPE(expr_node) != NAME) {
|
|
ast_error(c, chch,
|
|
"keyword can't be an expression");
|
|
return NULL;
|
|
}
|
|
key = new_identifier(STR(expr_node), c);
|
|
if (key == NULL) {
|
|
return NULL;
|
|
}
|
|
if (forbidden_name(c, key, chch, 1)) {
|
|
return NULL;
|
|
}
|
|
for (k = 0; k < nkeywords; k++) {
|
|
tmp = ((keyword_ty)asdl_seq_GET(keywords, k))->arg;
|
|
if (tmp && !PyUnicode_Compare(tmp, key)) {
|
|
ast_error(c, chch,
|
|
"keyword argument repeated");
|
|
return NULL;
|
|
}
|
|
}
|
|
e = ast_for_expr(c, CHILD(ch, 2));
|
|
if (!e)
|
|
return NULL;
|
|
kw = keyword(key, e, c->c_arena);
|
|
if (!kw)
|
|
return NULL;
|
|
asdl_seq_SET(keywords, nkeywords++, kw);
|
|
}
|
|
}
|
|
}
|
|
|
|
return Call(func, args, keywords, func->lineno, func->col_offset, c->c_arena);
|
|
}
|
|
|
|
static expr_ty
|
|
ast_for_testlist(struct compiling *c, const node* n)
|
|
{
|
|
/* testlist_comp: test (comp_for | (',' test)* [',']) */
|
|
/* testlist: test (',' test)* [','] */
|
|
assert(NCH(n) > 0);
|
|
if (TYPE(n) == testlist_comp) {
|
|
if (NCH(n) > 1)
|
|
assert(TYPE(CHILD(n, 1)) != comp_for);
|
|
}
|
|
else {
|
|
assert(TYPE(n) == testlist ||
|
|
TYPE(n) == testlist_star_expr);
|
|
}
|
|
if (NCH(n) == 1)
|
|
return ast_for_expr(c, CHILD(n, 0));
|
|
else {
|
|
asdl_seq *tmp = seq_for_testlist(c, n);
|
|
if (!tmp)
|
|
return NULL;
|
|
return Tuple(tmp, Load, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_expr_stmt(struct compiling *c, const node *n)
|
|
{
|
|
REQ(n, expr_stmt);
|
|
/* expr_stmt: testlist_star_expr (annassign | augassign (yield_expr|testlist) |
|
|
('=' (yield_expr|testlist_star_expr))*)
|
|
annassign: ':' test ['=' test]
|
|
testlist_star_expr: (test|star_expr) (',' test|star_expr)* [',']
|
|
augassign: '+=' | '-=' | '*=' | '@=' | '/=' | '%=' | '&=' | '|=' | '^='
|
|
| '<<=' | '>>=' | '**=' | '//='
|
|
test: ... here starts the operator precedence dance
|
|
*/
|
|
|
|
if (NCH(n) == 1) {
|
|
expr_ty e = ast_for_testlist(c, CHILD(n, 0));
|
|
if (!e)
|
|
return NULL;
|
|
|
|
return Expr(e, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
else if (TYPE(CHILD(n, 1)) == augassign) {
|
|
expr_ty expr1, expr2;
|
|
operator_ty newoperator;
|
|
node *ch = CHILD(n, 0);
|
|
|
|
expr1 = ast_for_testlist(c, ch);
|
|
if (!expr1)
|
|
return NULL;
|
|
if(!set_context(c, expr1, Store, ch))
|
|
return NULL;
|
|
/* set_context checks that most expressions are not the left side.
|
|
Augmented assignments can only have a name, a subscript, or an
|
|
attribute on the left, though, so we have to explicitly check for
|
|
those. */
|
|
switch (expr1->kind) {
|
|
case Name_kind:
|
|
case Attribute_kind:
|
|
case Subscript_kind:
|
|
break;
|
|
default:
|
|
ast_error(c, ch, "illegal expression for augmented assignment");
|
|
return NULL;
|
|
}
|
|
|
|
ch = CHILD(n, 2);
|
|
if (TYPE(ch) == testlist)
|
|
expr2 = ast_for_testlist(c, ch);
|
|
else
|
|
expr2 = ast_for_expr(c, ch);
|
|
if (!expr2)
|
|
return NULL;
|
|
|
|
newoperator = ast_for_augassign(c, CHILD(n, 1));
|
|
if (!newoperator)
|
|
return NULL;
|
|
|
|
return AugAssign(expr1, newoperator, expr2, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
else if (TYPE(CHILD(n, 1)) == annassign) {
|
|
expr_ty expr1, expr2, expr3;
|
|
node *ch = CHILD(n, 0);
|
|
node *deep, *ann = CHILD(n, 1);
|
|
int simple = 1;
|
|
|
|
/* we keep track of parens to qualify (x) as expression not name */
|
|
deep = ch;
|
|
while (NCH(deep) == 1) {
|
|
deep = CHILD(deep, 0);
|
|
}
|
|
if (NCH(deep) > 0 && TYPE(CHILD(deep, 0)) == LPAR) {
|
|
simple = 0;
|
|
}
|
|
expr1 = ast_for_testlist(c, ch);
|
|
if (!expr1) {
|
|
return NULL;
|
|
}
|
|
switch (expr1->kind) {
|
|
case Name_kind:
|
|
if (forbidden_name(c, expr1->v.Name.id, n, 0)) {
|
|
return NULL;
|
|
}
|
|
expr1->v.Name.ctx = Store;
|
|
break;
|
|
case Attribute_kind:
|
|
if (forbidden_name(c, expr1->v.Attribute.attr, n, 1)) {
|
|
return NULL;
|
|
}
|
|
expr1->v.Attribute.ctx = Store;
|
|
break;
|
|
case Subscript_kind:
|
|
expr1->v.Subscript.ctx = Store;
|
|
break;
|
|
case List_kind:
|
|
ast_error(c, ch,
|
|
"only single target (not list) can be annotated");
|
|
return NULL;
|
|
case Tuple_kind:
|
|
ast_error(c, ch,
|
|
"only single target (not tuple) can be annotated");
|
|
return NULL;
|
|
default:
|
|
ast_error(c, ch,
|
|
"illegal target for annotation");
|
|
return NULL;
|
|
}
|
|
|
|
if (expr1->kind != Name_kind) {
|
|
simple = 0;
|
|
}
|
|
ch = CHILD(ann, 1);
|
|
expr2 = ast_for_expr(c, ch);
|
|
if (!expr2) {
|
|
return NULL;
|
|
}
|
|
if (NCH(ann) == 2) {
|
|
return AnnAssign(expr1, expr2, NULL, simple,
|
|
LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
else {
|
|
ch = CHILD(ann, 3);
|
|
expr3 = ast_for_expr(c, ch);
|
|
if (!expr3) {
|
|
return NULL;
|
|
}
|
|
return AnnAssign(expr1, expr2, expr3, simple,
|
|
LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
}
|
|
else {
|
|
int i;
|
|
asdl_seq *targets;
|
|
node *value;
|
|
expr_ty expression;
|
|
|
|
/* a normal assignment */
|
|
REQ(CHILD(n, 1), EQUAL);
|
|
targets = _Py_asdl_seq_new(NCH(n) / 2, c->c_arena);
|
|
if (!targets)
|
|
return NULL;
|
|
for (i = 0; i < NCH(n) - 2; i += 2) {
|
|
expr_ty e;
|
|
node *ch = CHILD(n, i);
|
|
if (TYPE(ch) == yield_expr) {
|
|
ast_error(c, ch, "assignment to yield expression not possible");
|
|
return NULL;
|
|
}
|
|
e = ast_for_testlist(c, ch);
|
|
if (!e)
|
|
return NULL;
|
|
|
|
/* set context to assign */
|
|
if (!set_context(c, e, Store, CHILD(n, i)))
|
|
return NULL;
|
|
|
|
asdl_seq_SET(targets, i / 2, e);
|
|
}
|
|
value = CHILD(n, NCH(n) - 1);
|
|
if (TYPE(value) == testlist_star_expr)
|
|
expression = ast_for_testlist(c, value);
|
|
else
|
|
expression = ast_for_expr(c, value);
|
|
if (!expression)
|
|
return NULL;
|
|
return Assign(targets, expression, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
}
|
|
|
|
|
|
static asdl_seq *
|
|
ast_for_exprlist(struct compiling *c, const node *n, expr_context_ty context)
|
|
{
|
|
asdl_seq *seq;
|
|
int i;
|
|
expr_ty e;
|
|
|
|
REQ(n, exprlist);
|
|
|
|
seq = _Py_asdl_seq_new((NCH(n) + 1) / 2, c->c_arena);
|
|
if (!seq)
|
|
return NULL;
|
|
for (i = 0; i < NCH(n); i += 2) {
|
|
e = ast_for_expr(c, CHILD(n, i));
|
|
if (!e)
|
|
return NULL;
|
|
asdl_seq_SET(seq, i / 2, e);
|
|
if (context && !set_context(c, e, context, CHILD(n, i)))
|
|
return NULL;
|
|
}
|
|
return seq;
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_del_stmt(struct compiling *c, const node *n)
|
|
{
|
|
asdl_seq *expr_list;
|
|
|
|
/* del_stmt: 'del' exprlist */
|
|
REQ(n, del_stmt);
|
|
|
|
expr_list = ast_for_exprlist(c, CHILD(n, 1), Del);
|
|
if (!expr_list)
|
|
return NULL;
|
|
return Delete(expr_list, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_flow_stmt(struct compiling *c, const node *n)
|
|
{
|
|
/*
|
|
flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt
|
|
| yield_stmt
|
|
break_stmt: 'break'
|
|
continue_stmt: 'continue'
|
|
return_stmt: 'return' [testlist]
|
|
yield_stmt: yield_expr
|
|
yield_expr: 'yield' testlist | 'yield' 'from' test
|
|
raise_stmt: 'raise' [test [',' test [',' test]]]
|
|
*/
|
|
node *ch;
|
|
|
|
REQ(n, flow_stmt);
|
|
ch = CHILD(n, 0);
|
|
switch (TYPE(ch)) {
|
|
case break_stmt:
|
|
return Break(LINENO(n), n->n_col_offset, c->c_arena);
|
|
case continue_stmt:
|
|
return Continue(LINENO(n), n->n_col_offset, c->c_arena);
|
|
case yield_stmt: { /* will reduce to yield_expr */
|
|
expr_ty exp = ast_for_expr(c, CHILD(ch, 0));
|
|
if (!exp)
|
|
return NULL;
|
|
return Expr(exp, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
case return_stmt:
|
|
if (NCH(ch) == 1)
|
|
return Return(NULL, LINENO(n), n->n_col_offset, c->c_arena);
|
|
else {
|
|
expr_ty expression = ast_for_testlist(c, CHILD(ch, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
return Return(expression, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
case raise_stmt:
|
|
if (NCH(ch) == 1)
|
|
return Raise(NULL, NULL, LINENO(n), n->n_col_offset, c->c_arena);
|
|
else if (NCH(ch) >= 2) {
|
|
expr_ty cause = NULL;
|
|
expr_ty expression = ast_for_expr(c, CHILD(ch, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
if (NCH(ch) == 4) {
|
|
cause = ast_for_expr(c, CHILD(ch, 3));
|
|
if (!cause)
|
|
return NULL;
|
|
}
|
|
return Raise(expression, cause, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
/* fall through */
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unexpected flow_stmt: %d", TYPE(ch));
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static alias_ty
|
|
alias_for_import_name(struct compiling *c, const node *n, int store)
|
|
{
|
|
/*
|
|
import_as_name: NAME ['as' NAME]
|
|
dotted_as_name: dotted_name ['as' NAME]
|
|
dotted_name: NAME ('.' NAME)*
|
|
*/
|
|
identifier str, name;
|
|
|
|
loop:
|
|
switch (TYPE(n)) {
|
|
case import_as_name: {
|
|
node *name_node = CHILD(n, 0);
|
|
str = NULL;
|
|
name = NEW_IDENTIFIER(name_node);
|
|
if (!name)
|
|
return NULL;
|
|
if (NCH(n) == 3) {
|
|
node *str_node = CHILD(n, 2);
|
|
str = NEW_IDENTIFIER(str_node);
|
|
if (!str)
|
|
return NULL;
|
|
if (store && forbidden_name(c, str, str_node, 0))
|
|
return NULL;
|
|
}
|
|
else {
|
|
if (forbidden_name(c, name, name_node, 0))
|
|
return NULL;
|
|
}
|
|
return alias(name, str, c->c_arena);
|
|
}
|
|
case dotted_as_name:
|
|
if (NCH(n) == 1) {
|
|
n = CHILD(n, 0);
|
|
goto loop;
|
|
}
|
|
else {
|
|
node *asname_node = CHILD(n, 2);
|
|
alias_ty a = alias_for_import_name(c, CHILD(n, 0), 0);
|
|
if (!a)
|
|
return NULL;
|
|
assert(!a->asname);
|
|
a->asname = NEW_IDENTIFIER(asname_node);
|
|
if (!a->asname)
|
|
return NULL;
|
|
if (forbidden_name(c, a->asname, asname_node, 0))
|
|
return NULL;
|
|
return a;
|
|
}
|
|
break;
|
|
case dotted_name:
|
|
if (NCH(n) == 1) {
|
|
node *name_node = CHILD(n, 0);
|
|
name = NEW_IDENTIFIER(name_node);
|
|
if (!name)
|
|
return NULL;
|
|
if (store && forbidden_name(c, name, name_node, 0))
|
|
return NULL;
|
|
return alias(name, NULL, c->c_arena);
|
|
}
|
|
else {
|
|
/* Create a string of the form "a.b.c" */
|
|
int i;
|
|
size_t len;
|
|
char *s;
|
|
PyObject *uni;
|
|
|
|
len = 0;
|
|
for (i = 0; i < NCH(n); i += 2)
|
|
/* length of string plus one for the dot */
|
|
len += strlen(STR(CHILD(n, i))) + 1;
|
|
len--; /* the last name doesn't have a dot */
|
|
str = PyBytes_FromStringAndSize(NULL, len);
|
|
if (!str)
|
|
return NULL;
|
|
s = PyBytes_AS_STRING(str);
|
|
if (!s)
|
|
return NULL;
|
|
for (i = 0; i < NCH(n); i += 2) {
|
|
char *sch = STR(CHILD(n, i));
|
|
strcpy(s, STR(CHILD(n, i)));
|
|
s += strlen(sch);
|
|
*s++ = '.';
|
|
}
|
|
--s;
|
|
*s = '\0';
|
|
uni = PyUnicode_DecodeUTF8(PyBytes_AS_STRING(str),
|
|
PyBytes_GET_SIZE(str),
|
|
NULL);
|
|
Py_DECREF(str);
|
|
if (!uni)
|
|
return NULL;
|
|
str = uni;
|
|
PyUnicode_InternInPlace(&str);
|
|
if (PyArena_AddPyObject(c->c_arena, str) < 0) {
|
|
Py_DECREF(str);
|
|
return NULL;
|
|
}
|
|
return alias(str, NULL, c->c_arena);
|
|
}
|
|
break;
|
|
case STAR:
|
|
str = PyUnicode_InternFromString("*");
|
|
if (!str)
|
|
return NULL;
|
|
if (PyArena_AddPyObject(c->c_arena, str) < 0) {
|
|
Py_DECREF(str);
|
|
return NULL;
|
|
}
|
|
return alias(str, NULL, c->c_arena);
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unexpected import name: %d", TYPE(n));
|
|
return NULL;
|
|
}
|
|
|
|
PyErr_SetString(PyExc_SystemError, "unhandled import name condition");
|
|
return NULL;
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_import_stmt(struct compiling *c, const node *n)
|
|
{
|
|
/*
|
|
import_stmt: import_name | import_from
|
|
import_name: 'import' dotted_as_names
|
|
import_from: 'from' (('.' | '...')* dotted_name | ('.' | '...')+)
|
|
'import' ('*' | '(' import_as_names ')' | import_as_names)
|
|
*/
|
|
int lineno;
|
|
int col_offset;
|
|
int i;
|
|
asdl_seq *aliases;
|
|
|
|
REQ(n, import_stmt);
|
|
lineno = LINENO(n);
|
|
col_offset = n->n_col_offset;
|
|
n = CHILD(n, 0);
|
|
if (TYPE(n) == import_name) {
|
|
n = CHILD(n, 1);
|
|
REQ(n, dotted_as_names);
|
|
aliases = _Py_asdl_seq_new((NCH(n) + 1) / 2, c->c_arena);
|
|
if (!aliases)
|
|
return NULL;
|
|
for (i = 0; i < NCH(n); i += 2) {
|
|
alias_ty import_alias = alias_for_import_name(c, CHILD(n, i), 1);
|
|
if (!import_alias)
|
|
return NULL;
|
|
asdl_seq_SET(aliases, i / 2, import_alias);
|
|
}
|
|
return Import(aliases, lineno, col_offset, c->c_arena);
|
|
}
|
|
else if (TYPE(n) == import_from) {
|
|
int n_children;
|
|
int idx, ndots = 0;
|
|
alias_ty mod = NULL;
|
|
identifier modname = NULL;
|
|
|
|
/* Count the number of dots (for relative imports) and check for the
|
|
optional module name */
|
|
for (idx = 1; idx < NCH(n); idx++) {
|
|
if (TYPE(CHILD(n, idx)) == dotted_name) {
|
|
mod = alias_for_import_name(c, CHILD(n, idx), 0);
|
|
if (!mod)
|
|
return NULL;
|
|
idx++;
|
|
break;
|
|
} else if (TYPE(CHILD(n, idx)) == ELLIPSIS) {
|
|
/* three consecutive dots are tokenized as one ELLIPSIS */
|
|
ndots += 3;
|
|
continue;
|
|
} else if (TYPE(CHILD(n, idx)) != DOT) {
|
|
break;
|
|
}
|
|
ndots++;
|
|
}
|
|
idx++; /* skip over the 'import' keyword */
|
|
switch (TYPE(CHILD(n, idx))) {
|
|
case STAR:
|
|
/* from ... import * */
|
|
n = CHILD(n, idx);
|
|
n_children = 1;
|
|
break;
|
|
case LPAR:
|
|
/* from ... import (x, y, z) */
|
|
n = CHILD(n, idx + 1);
|
|
n_children = NCH(n);
|
|
break;
|
|
case import_as_names:
|
|
/* from ... import x, y, z */
|
|
n = CHILD(n, idx);
|
|
n_children = NCH(n);
|
|
if (n_children % 2 == 0) {
|
|
ast_error(c, n, "trailing comma not allowed without"
|
|
" surrounding parentheses");
|
|
return NULL;
|
|
}
|
|
break;
|
|
default:
|
|
ast_error(c, n, "Unexpected node-type in from-import");
|
|
return NULL;
|
|
}
|
|
|
|
aliases = _Py_asdl_seq_new((n_children + 1) / 2, c->c_arena);
|
|
if (!aliases)
|
|
return NULL;
|
|
|
|
/* handle "from ... import *" special b/c there's no children */
|
|
if (TYPE(n) == STAR) {
|
|
alias_ty import_alias = alias_for_import_name(c, n, 1);
|
|
if (!import_alias)
|
|
return NULL;
|
|
asdl_seq_SET(aliases, 0, import_alias);
|
|
}
|
|
else {
|
|
for (i = 0; i < NCH(n); i += 2) {
|
|
alias_ty import_alias = alias_for_import_name(c, CHILD(n, i), 1);
|
|
if (!import_alias)
|
|
return NULL;
|
|
asdl_seq_SET(aliases, i / 2, import_alias);
|
|
}
|
|
}
|
|
if (mod != NULL)
|
|
modname = mod->name;
|
|
return ImportFrom(modname, aliases, ndots, lineno, col_offset,
|
|
c->c_arena);
|
|
}
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unknown import statement: starts with command '%s'",
|
|
STR(CHILD(n, 0)));
|
|
return NULL;
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_global_stmt(struct compiling *c, const node *n)
|
|
{
|
|
/* global_stmt: 'global' NAME (',' NAME)* */
|
|
identifier name;
|
|
asdl_seq *s;
|
|
int i;
|
|
|
|
REQ(n, global_stmt);
|
|
s = _Py_asdl_seq_new(NCH(n) / 2, c->c_arena);
|
|
if (!s)
|
|
return NULL;
|
|
for (i = 1; i < NCH(n); i += 2) {
|
|
name = NEW_IDENTIFIER(CHILD(n, i));
|
|
if (!name)
|
|
return NULL;
|
|
asdl_seq_SET(s, i / 2, name);
|
|
}
|
|
return Global(s, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_nonlocal_stmt(struct compiling *c, const node *n)
|
|
{
|
|
/* nonlocal_stmt: 'nonlocal' NAME (',' NAME)* */
|
|
identifier name;
|
|
asdl_seq *s;
|
|
int i;
|
|
|
|
REQ(n, nonlocal_stmt);
|
|
s = _Py_asdl_seq_new(NCH(n) / 2, c->c_arena);
|
|
if (!s)
|
|
return NULL;
|
|
for (i = 1; i < NCH(n); i += 2) {
|
|
name = NEW_IDENTIFIER(CHILD(n, i));
|
|
if (!name)
|
|
return NULL;
|
|
asdl_seq_SET(s, i / 2, name);
|
|
}
|
|
return Nonlocal(s, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_assert_stmt(struct compiling *c, const node *n)
|
|
{
|
|
/* assert_stmt: 'assert' test [',' test] */
|
|
REQ(n, assert_stmt);
|
|
if (NCH(n) == 2) {
|
|
expr_ty expression = ast_for_expr(c, CHILD(n, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
return Assert(expression, NULL, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
else if (NCH(n) == 4) {
|
|
expr_ty expr1, expr2;
|
|
|
|
expr1 = ast_for_expr(c, CHILD(n, 1));
|
|
if (!expr1)
|
|
return NULL;
|
|
expr2 = ast_for_expr(c, CHILD(n, 3));
|
|
if (!expr2)
|
|
return NULL;
|
|
|
|
return Assert(expr1, expr2, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
PyErr_Format(PyExc_SystemError,
|
|
"improper number of parts to 'assert' statement: %d",
|
|
NCH(n));
|
|
return NULL;
|
|
}
|
|
|
|
static asdl_seq *
|
|
ast_for_suite(struct compiling *c, const node *n)
|
|
{
|
|
/* suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT */
|
|
asdl_seq *seq;
|
|
stmt_ty s;
|
|
int i, total, num, end, pos = 0;
|
|
node *ch;
|
|
|
|
REQ(n, suite);
|
|
|
|
total = num_stmts(n);
|
|
seq = _Py_asdl_seq_new(total, c->c_arena);
|
|
if (!seq)
|
|
return NULL;
|
|
if (TYPE(CHILD(n, 0)) == simple_stmt) {
|
|
n = CHILD(n, 0);
|
|
/* simple_stmt always ends with a NEWLINE,
|
|
and may have a trailing SEMI
|
|
*/
|
|
end = NCH(n) - 1;
|
|
if (TYPE(CHILD(n, end - 1)) == SEMI)
|
|
end--;
|
|
/* loop by 2 to skip semi-colons */
|
|
for (i = 0; i < end; i += 2) {
|
|
ch = CHILD(n, i);
|
|
s = ast_for_stmt(c, ch);
|
|
if (!s)
|
|
return NULL;
|
|
asdl_seq_SET(seq, pos++, s);
|
|
}
|
|
}
|
|
else {
|
|
for (i = 2; i < (NCH(n) - 1); i++) {
|
|
ch = CHILD(n, i);
|
|
REQ(ch, stmt);
|
|
num = num_stmts(ch);
|
|
if (num == 1) {
|
|
/* small_stmt or compound_stmt with only one child */
|
|
s = ast_for_stmt(c, ch);
|
|
if (!s)
|
|
return NULL;
|
|
asdl_seq_SET(seq, pos++, s);
|
|
}
|
|
else {
|
|
int j;
|
|
ch = CHILD(ch, 0);
|
|
REQ(ch, simple_stmt);
|
|
for (j = 0; j < NCH(ch); j += 2) {
|
|
/* statement terminates with a semi-colon ';' */
|
|
if (NCH(CHILD(ch, j)) == 0) {
|
|
assert((j + 1) == NCH(ch));
|
|
break;
|
|
}
|
|
s = ast_for_stmt(c, CHILD(ch, j));
|
|
if (!s)
|
|
return NULL;
|
|
asdl_seq_SET(seq, pos++, s);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
assert(pos == seq->size);
|
|
return seq;
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_if_stmt(struct compiling *c, const node *n)
|
|
{
|
|
/* if_stmt: 'if' test ':' suite ('elif' test ':' suite)*
|
|
['else' ':' suite]
|
|
*/
|
|
char *s;
|
|
|
|
REQ(n, if_stmt);
|
|
|
|
if (NCH(n) == 4) {
|
|
expr_ty expression;
|
|
asdl_seq *suite_seq;
|
|
|
|
expression = ast_for_expr(c, CHILD(n, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
suite_seq = ast_for_suite(c, CHILD(n, 3));
|
|
if (!suite_seq)
|
|
return NULL;
|
|
|
|
return If(expression, suite_seq, NULL, LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
}
|
|
|
|
s = STR(CHILD(n, 4));
|
|
/* s[2], the third character in the string, will be
|
|
's' for el_s_e, or
|
|
'i' for el_i_f
|
|
*/
|
|
if (s[2] == 's') {
|
|
expr_ty expression;
|
|
asdl_seq *seq1, *seq2;
|
|
|
|
expression = ast_for_expr(c, CHILD(n, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
seq1 = ast_for_suite(c, CHILD(n, 3));
|
|
if (!seq1)
|
|
return NULL;
|
|
seq2 = ast_for_suite(c, CHILD(n, 6));
|
|
if (!seq2)
|
|
return NULL;
|
|
|
|
return If(expression, seq1, seq2, LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
}
|
|
else if (s[2] == 'i') {
|
|
int i, n_elif, has_else = 0;
|
|
expr_ty expression;
|
|
asdl_seq *suite_seq;
|
|
asdl_seq *orelse = NULL;
|
|
n_elif = NCH(n) - 4;
|
|
/* must reference the child n_elif+1 since 'else' token is third,
|
|
not fourth, child from the end. */
|
|
if (TYPE(CHILD(n, (n_elif + 1))) == NAME
|
|
&& STR(CHILD(n, (n_elif + 1)))[2] == 's') {
|
|
has_else = 1;
|
|
n_elif -= 3;
|
|
}
|
|
n_elif /= 4;
|
|
|
|
if (has_else) {
|
|
asdl_seq *suite_seq2;
|
|
|
|
orelse = _Py_asdl_seq_new(1, c->c_arena);
|
|
if (!orelse)
|
|
return NULL;
|
|
expression = ast_for_expr(c, CHILD(n, NCH(n) - 6));
|
|
if (!expression)
|
|
return NULL;
|
|
suite_seq = ast_for_suite(c, CHILD(n, NCH(n) - 4));
|
|
if (!suite_seq)
|
|
return NULL;
|
|
suite_seq2 = ast_for_suite(c, CHILD(n, NCH(n) - 1));
|
|
if (!suite_seq2)
|
|
return NULL;
|
|
|
|
asdl_seq_SET(orelse, 0,
|
|
If(expression, suite_seq, suite_seq2,
|
|
LINENO(CHILD(n, NCH(n) - 6)),
|
|
CHILD(n, NCH(n) - 6)->n_col_offset,
|
|
c->c_arena));
|
|
/* the just-created orelse handled the last elif */
|
|
n_elif--;
|
|
}
|
|
|
|
for (i = 0; i < n_elif; i++) {
|
|
int off = 5 + (n_elif - i - 1) * 4;
|
|
asdl_seq *newobj = _Py_asdl_seq_new(1, c->c_arena);
|
|
if (!newobj)
|
|
return NULL;
|
|
expression = ast_for_expr(c, CHILD(n, off));
|
|
if (!expression)
|
|
return NULL;
|
|
suite_seq = ast_for_suite(c, CHILD(n, off + 2));
|
|
if (!suite_seq)
|
|
return NULL;
|
|
|
|
asdl_seq_SET(newobj, 0,
|
|
If(expression, suite_seq, orelse,
|
|
LINENO(CHILD(n, off)),
|
|
CHILD(n, off)->n_col_offset, c->c_arena));
|
|
orelse = newobj;
|
|
}
|
|
expression = ast_for_expr(c, CHILD(n, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
suite_seq = ast_for_suite(c, CHILD(n, 3));
|
|
if (!suite_seq)
|
|
return NULL;
|
|
return If(expression, suite_seq, orelse,
|
|
LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unexpected token in 'if' statement: %s", s);
|
|
return NULL;
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_while_stmt(struct compiling *c, const node *n)
|
|
{
|
|
/* while_stmt: 'while' test ':' suite ['else' ':' suite] */
|
|
REQ(n, while_stmt);
|
|
|
|
if (NCH(n) == 4) {
|
|
expr_ty expression;
|
|
asdl_seq *suite_seq;
|
|
|
|
expression = ast_for_expr(c, CHILD(n, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
suite_seq = ast_for_suite(c, CHILD(n, 3));
|
|
if (!suite_seq)
|
|
return NULL;
|
|
return While(expression, suite_seq, NULL, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
else if (NCH(n) == 7) {
|
|
expr_ty expression;
|
|
asdl_seq *seq1, *seq2;
|
|
|
|
expression = ast_for_expr(c, CHILD(n, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
seq1 = ast_for_suite(c, CHILD(n, 3));
|
|
if (!seq1)
|
|
return NULL;
|
|
seq2 = ast_for_suite(c, CHILD(n, 6));
|
|
if (!seq2)
|
|
return NULL;
|
|
|
|
return While(expression, seq1, seq2, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
PyErr_Format(PyExc_SystemError,
|
|
"wrong number of tokens for 'while' statement: %d",
|
|
NCH(n));
|
|
return NULL;
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_for_stmt(struct compiling *c, const node *n0, bool is_async)
|
|
{
|
|
const node * const n = is_async ? CHILD(n0, 1) : n0;
|
|
asdl_seq *_target, *seq = NULL, *suite_seq;
|
|
expr_ty expression;
|
|
expr_ty target, first;
|
|
const node *node_target;
|
|
/* for_stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite] */
|
|
REQ(n, for_stmt);
|
|
|
|
if (NCH(n) == 9) {
|
|
seq = ast_for_suite(c, CHILD(n, 8));
|
|
if (!seq)
|
|
return NULL;
|
|
}
|
|
|
|
node_target = CHILD(n, 1);
|
|
_target = ast_for_exprlist(c, node_target, Store);
|
|
if (!_target)
|
|
return NULL;
|
|
/* Check the # of children rather than the length of _target, since
|
|
for x, in ... has 1 element in _target, but still requires a Tuple. */
|
|
first = (expr_ty)asdl_seq_GET(_target, 0);
|
|
if (NCH(node_target) == 1)
|
|
target = first;
|
|
else
|
|
target = Tuple(_target, Store, first->lineno, first->col_offset, c->c_arena);
|
|
|
|
expression = ast_for_testlist(c, CHILD(n, 3));
|
|
if (!expression)
|
|
return NULL;
|
|
suite_seq = ast_for_suite(c, CHILD(n, 5));
|
|
if (!suite_seq)
|
|
return NULL;
|
|
|
|
if (is_async)
|
|
return AsyncFor(target, expression, suite_seq, seq,
|
|
LINENO(n0), n0->n_col_offset,
|
|
c->c_arena);
|
|
else
|
|
return For(target, expression, suite_seq, seq,
|
|
LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
}
|
|
|
|
static excepthandler_ty
|
|
ast_for_except_clause(struct compiling *c, const node *exc, node *body)
|
|
{
|
|
/* except_clause: 'except' [test ['as' test]] */
|
|
REQ(exc, except_clause);
|
|
REQ(body, suite);
|
|
|
|
if (NCH(exc) == 1) {
|
|
asdl_seq *suite_seq = ast_for_suite(c, body);
|
|
if (!suite_seq)
|
|
return NULL;
|
|
|
|
return ExceptHandler(NULL, NULL, suite_seq, LINENO(exc),
|
|
exc->n_col_offset, c->c_arena);
|
|
}
|
|
else if (NCH(exc) == 2) {
|
|
expr_ty expression;
|
|
asdl_seq *suite_seq;
|
|
|
|
expression = ast_for_expr(c, CHILD(exc, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
suite_seq = ast_for_suite(c, body);
|
|
if (!suite_seq)
|
|
return NULL;
|
|
|
|
return ExceptHandler(expression, NULL, suite_seq, LINENO(exc),
|
|
exc->n_col_offset, c->c_arena);
|
|
}
|
|
else if (NCH(exc) == 4) {
|
|
asdl_seq *suite_seq;
|
|
expr_ty expression;
|
|
identifier e = NEW_IDENTIFIER(CHILD(exc, 3));
|
|
if (!e)
|
|
return NULL;
|
|
if (forbidden_name(c, e, CHILD(exc, 3), 0))
|
|
return NULL;
|
|
expression = ast_for_expr(c, CHILD(exc, 1));
|
|
if (!expression)
|
|
return NULL;
|
|
suite_seq = ast_for_suite(c, body);
|
|
if (!suite_seq)
|
|
return NULL;
|
|
|
|
return ExceptHandler(expression, e, suite_seq, LINENO(exc),
|
|
exc->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
PyErr_Format(PyExc_SystemError,
|
|
"wrong number of children for 'except' clause: %d",
|
|
NCH(exc));
|
|
return NULL;
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_try_stmt(struct compiling *c, const node *n)
|
|
{
|
|
const int nch = NCH(n);
|
|
int n_except = (nch - 3)/3;
|
|
asdl_seq *body, *handlers = NULL, *orelse = NULL, *finally = NULL;
|
|
|
|
REQ(n, try_stmt);
|
|
|
|
body = ast_for_suite(c, CHILD(n, 2));
|
|
if (body == NULL)
|
|
return NULL;
|
|
|
|
if (TYPE(CHILD(n, nch - 3)) == NAME) {
|
|
if (strcmp(STR(CHILD(n, nch - 3)), "finally") == 0) {
|
|
if (nch >= 9 && TYPE(CHILD(n, nch - 6)) == NAME) {
|
|
/* we can assume it's an "else",
|
|
because nch >= 9 for try-else-finally and
|
|
it would otherwise have a type of except_clause */
|
|
orelse = ast_for_suite(c, CHILD(n, nch - 4));
|
|
if (orelse == NULL)
|
|
return NULL;
|
|
n_except--;
|
|
}
|
|
|
|
finally = ast_for_suite(c, CHILD(n, nch - 1));
|
|
if (finally == NULL)
|
|
return NULL;
|
|
n_except--;
|
|
}
|
|
else {
|
|
/* we can assume it's an "else",
|
|
otherwise it would have a type of except_clause */
|
|
orelse = ast_for_suite(c, CHILD(n, nch - 1));
|
|
if (orelse == NULL)
|
|
return NULL;
|
|
n_except--;
|
|
}
|
|
}
|
|
else if (TYPE(CHILD(n, nch - 3)) != except_clause) {
|
|
ast_error(c, n, "malformed 'try' statement");
|
|
return NULL;
|
|
}
|
|
|
|
if (n_except > 0) {
|
|
int i;
|
|
/* process except statements to create a try ... except */
|
|
handlers = _Py_asdl_seq_new(n_except, c->c_arena);
|
|
if (handlers == NULL)
|
|
return NULL;
|
|
|
|
for (i = 0; i < n_except; i++) {
|
|
excepthandler_ty e = ast_for_except_clause(c, CHILD(n, 3 + i * 3),
|
|
CHILD(n, 5 + i * 3));
|
|
if (!e)
|
|
return NULL;
|
|
asdl_seq_SET(handlers, i, e);
|
|
}
|
|
}
|
|
|
|
assert(finally != NULL || asdl_seq_LEN(handlers));
|
|
return Try(body, handlers, orelse, finally, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
/* with_item: test ['as' expr] */
|
|
static withitem_ty
|
|
ast_for_with_item(struct compiling *c, const node *n)
|
|
{
|
|
expr_ty context_expr, optional_vars = NULL;
|
|
|
|
REQ(n, with_item);
|
|
context_expr = ast_for_expr(c, CHILD(n, 0));
|
|
if (!context_expr)
|
|
return NULL;
|
|
if (NCH(n) == 3) {
|
|
optional_vars = ast_for_expr(c, CHILD(n, 2));
|
|
|
|
if (!optional_vars) {
|
|
return NULL;
|
|
}
|
|
if (!set_context(c, optional_vars, Store, n)) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return withitem(context_expr, optional_vars, c->c_arena);
|
|
}
|
|
|
|
/* with_stmt: 'with' with_item (',' with_item)* ':' suite */
|
|
static stmt_ty
|
|
ast_for_with_stmt(struct compiling *c, const node *n0, bool is_async)
|
|
{
|
|
const node * const n = is_async ? CHILD(n0, 1) : n0;
|
|
int i, n_items;
|
|
asdl_seq *items, *body;
|
|
|
|
REQ(n, with_stmt);
|
|
|
|
n_items = (NCH(n) - 2) / 2;
|
|
items = _Py_asdl_seq_new(n_items, c->c_arena);
|
|
if (!items)
|
|
return NULL;
|
|
for (i = 1; i < NCH(n) - 2; i += 2) {
|
|
withitem_ty item = ast_for_with_item(c, CHILD(n, i));
|
|
if (!item)
|
|
return NULL;
|
|
asdl_seq_SET(items, (i - 1) / 2, item);
|
|
}
|
|
|
|
body = ast_for_suite(c, CHILD(n, NCH(n) - 1));
|
|
if (!body)
|
|
return NULL;
|
|
|
|
if (is_async)
|
|
return AsyncWith(items, body, LINENO(n0), n0->n_col_offset, c->c_arena);
|
|
else
|
|
return With(items, body, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_classdef(struct compiling *c, const node *n, asdl_seq *decorator_seq)
|
|
{
|
|
/* classdef: 'class' NAME ['(' arglist ')'] ':' suite */
|
|
PyObject *classname;
|
|
asdl_seq *s;
|
|
expr_ty call;
|
|
|
|
REQ(n, classdef);
|
|
|
|
if (NCH(n) == 4) { /* class NAME ':' suite */
|
|
s = ast_for_suite(c, CHILD(n, 3));
|
|
if (!s)
|
|
return NULL;
|
|
classname = NEW_IDENTIFIER(CHILD(n, 1));
|
|
if (!classname)
|
|
return NULL;
|
|
if (forbidden_name(c, classname, CHILD(n, 3), 0))
|
|
return NULL;
|
|
return ClassDef(classname, NULL, NULL, s, decorator_seq,
|
|
LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
if (TYPE(CHILD(n, 3)) == RPAR) { /* class NAME '(' ')' ':' suite */
|
|
s = ast_for_suite(c, CHILD(n, 5));
|
|
if (!s)
|
|
return NULL;
|
|
classname = NEW_IDENTIFIER(CHILD(n, 1));
|
|
if (!classname)
|
|
return NULL;
|
|
if (forbidden_name(c, classname, CHILD(n, 3), 0))
|
|
return NULL;
|
|
return ClassDef(classname, NULL, NULL, s, decorator_seq,
|
|
LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
/* class NAME '(' arglist ')' ':' suite */
|
|
/* build up a fake Call node so we can extract its pieces */
|
|
{
|
|
PyObject *dummy_name;
|
|
expr_ty dummy;
|
|
dummy_name = NEW_IDENTIFIER(CHILD(n, 1));
|
|
if (!dummy_name)
|
|
return NULL;
|
|
dummy = Name(dummy_name, Load, LINENO(n), n->n_col_offset, c->c_arena);
|
|
call = ast_for_call(c, CHILD(n, 3), dummy, false);
|
|
if (!call)
|
|
return NULL;
|
|
}
|
|
s = ast_for_suite(c, CHILD(n, 6));
|
|
if (!s)
|
|
return NULL;
|
|
classname = NEW_IDENTIFIER(CHILD(n, 1));
|
|
if (!classname)
|
|
return NULL;
|
|
if (forbidden_name(c, classname, CHILD(n, 1), 0))
|
|
return NULL;
|
|
|
|
return ClassDef(classname, call->v.Call.args, call->v.Call.keywords, s,
|
|
decorator_seq, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
static stmt_ty
|
|
ast_for_stmt(struct compiling *c, const node *n)
|
|
{
|
|
if (TYPE(n) == stmt) {
|
|
assert(NCH(n) == 1);
|
|
n = CHILD(n, 0);
|
|
}
|
|
if (TYPE(n) == simple_stmt) {
|
|
assert(num_stmts(n) == 1);
|
|
n = CHILD(n, 0);
|
|
}
|
|
if (TYPE(n) == small_stmt) {
|
|
n = CHILD(n, 0);
|
|
/* small_stmt: expr_stmt | del_stmt | pass_stmt | flow_stmt
|
|
| import_stmt | global_stmt | nonlocal_stmt | assert_stmt
|
|
*/
|
|
switch (TYPE(n)) {
|
|
case expr_stmt:
|
|
return ast_for_expr_stmt(c, n);
|
|
case del_stmt:
|
|
return ast_for_del_stmt(c, n);
|
|
case pass_stmt:
|
|
return Pass(LINENO(n), n->n_col_offset, c->c_arena);
|
|
case flow_stmt:
|
|
return ast_for_flow_stmt(c, n);
|
|
case import_stmt:
|
|
return ast_for_import_stmt(c, n);
|
|
case global_stmt:
|
|
return ast_for_global_stmt(c, n);
|
|
case nonlocal_stmt:
|
|
return ast_for_nonlocal_stmt(c, n);
|
|
case assert_stmt:
|
|
return ast_for_assert_stmt(c, n);
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unhandled small_stmt: TYPE=%d NCH=%d\n",
|
|
TYPE(n), NCH(n));
|
|
return NULL;
|
|
}
|
|
}
|
|
else {
|
|
/* compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt
|
|
| funcdef | classdef | decorated | async_stmt
|
|
*/
|
|
node *ch = CHILD(n, 0);
|
|
REQ(n, compound_stmt);
|
|
switch (TYPE(ch)) {
|
|
case if_stmt:
|
|
return ast_for_if_stmt(c, ch);
|
|
case while_stmt:
|
|
return ast_for_while_stmt(c, ch);
|
|
case for_stmt:
|
|
return ast_for_for_stmt(c, ch, 0);
|
|
case try_stmt:
|
|
return ast_for_try_stmt(c, ch);
|
|
case with_stmt:
|
|
return ast_for_with_stmt(c, ch, 0);
|
|
case funcdef:
|
|
return ast_for_funcdef(c, ch, NULL);
|
|
case classdef:
|
|
return ast_for_classdef(c, ch, NULL);
|
|
case decorated:
|
|
return ast_for_decorated(c, ch);
|
|
case async_stmt:
|
|
return ast_for_async_stmt(c, ch);
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unhandled compound_stmt: TYPE=%d NCH=%d\n",
|
|
TYPE(n), NCH(n));
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
parsenumber_raw(struct compiling *c, const char *s)
|
|
{
|
|
const char *end;
|
|
long x;
|
|
double dx;
|
|
Py_complex compl;
|
|
int imflag;
|
|
|
|
assert(s != NULL);
|
|
errno = 0;
|
|
end = s + strlen(s) - 1;
|
|
imflag = *end == 'j' || *end == 'J';
|
|
if (s[0] == '0') {
|
|
x = (long) PyOS_strtoul(s, (char **)&end, 0);
|
|
if (x < 0 && errno == 0) {
|
|
return PyLong_FromString(s, (char **)0, 0);
|
|
}
|
|
}
|
|
else
|
|
x = PyOS_strtol(s, (char **)&end, 0);
|
|
if (*end == '\0') {
|
|
if (errno != 0)
|
|
return PyLong_FromString(s, (char **)0, 0);
|
|
return PyLong_FromLong(x);
|
|
}
|
|
/* XXX Huge floats may silently fail */
|
|
if (imflag) {
|
|
compl.real = 0.;
|
|
compl.imag = PyOS_string_to_double(s, (char **)&end, NULL);
|
|
if (compl.imag == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
return PyComplex_FromCComplex(compl);
|
|
}
|
|
else
|
|
{
|
|
dx = PyOS_string_to_double(s, NULL, NULL);
|
|
if (dx == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
return PyFloat_FromDouble(dx);
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
parsenumber(struct compiling *c, const char *s)
|
|
{
|
|
char *dup, *end;
|
|
PyObject *res = NULL;
|
|
|
|
assert(s != NULL);
|
|
|
|
if (strchr(s, '_') == NULL) {
|
|
return parsenumber_raw(c, s);
|
|
}
|
|
/* Create a duplicate without underscores. */
|
|
dup = PyMem_Malloc(strlen(s) + 1);
|
|
end = dup;
|
|
for (; *s; s++) {
|
|
if (*s != '_') {
|
|
*end++ = *s;
|
|
}
|
|
}
|
|
*end = '\0';
|
|
res = parsenumber_raw(c, dup);
|
|
PyMem_Free(dup);
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
decode_utf8(struct compiling *c, const char **sPtr, const char *end)
|
|
{
|
|
const char *s, *t;
|
|
t = s = *sPtr;
|
|
/* while (s < end && *s != '\\') s++; */ /* inefficient for u".." */
|
|
while (s < end && (*s & 0x80)) s++;
|
|
*sPtr = s;
|
|
return PyUnicode_DecodeUTF8(t, s - t, NULL);
|
|
}
|
|
|
|
static int
|
|
warn_invalid_escape_sequence(struct compiling *c, const node *n,
|
|
unsigned char first_invalid_escape_char)
|
|
{
|
|
PyObject *msg = PyUnicode_FromFormat("invalid escape sequence \\%c",
|
|
first_invalid_escape_char);
|
|
if (msg == NULL) {
|
|
return -1;
|
|
}
|
|
if (PyErr_WarnExplicitObject(PyExc_DeprecationWarning, msg,
|
|
c->c_filename, LINENO(n),
|
|
NULL, NULL) < 0)
|
|
{
|
|
if (PyErr_ExceptionMatches(PyExc_DeprecationWarning)) {
|
|
const char *s;
|
|
|
|
/* Replace the DeprecationWarning exception with a SyntaxError
|
|
to get a more accurate error report */
|
|
PyErr_Clear();
|
|
|
|
s = PyUnicode_AsUTF8(msg);
|
|
if (s != NULL) {
|
|
ast_error(c, n, s);
|
|
}
|
|
}
|
|
Py_DECREF(msg);
|
|
return -1;
|
|
}
|
|
Py_DECREF(msg);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
decode_unicode_with_escapes(struct compiling *c, const node *n, const char *s,
|
|
size_t len)
|
|
{
|
|
PyObject *v, *u;
|
|
char *buf;
|
|
char *p;
|
|
const char *end;
|
|
|
|
/* check for integer overflow */
|
|
if (len > SIZE_MAX / 6)
|
|
return NULL;
|
|
/* "ä" (2 bytes) may become "\U000000E4" (10 bytes), or 1:5
|
|
"\ä" (3 bytes) may become "\u005c\U000000E4" (16 bytes), or ~1:6 */
|
|
u = PyBytes_FromStringAndSize((char *)NULL, len * 6);
|
|
if (u == NULL)
|
|
return NULL;
|
|
p = buf = PyBytes_AsString(u);
|
|
end = s + len;
|
|
while (s < end) {
|
|
if (*s == '\\') {
|
|
*p++ = *s++;
|
|
if (s >= end || *s & 0x80) {
|
|
strcpy(p, "u005c");
|
|
p += 5;
|
|
if (s >= end)
|
|
break;
|
|
}
|
|
}
|
|
if (*s & 0x80) { /* XXX inefficient */
|
|
PyObject *w;
|
|
int kind;
|
|
void *data;
|
|
Py_ssize_t len, i;
|
|
w = decode_utf8(c, &s, end);
|
|
if (w == NULL) {
|
|
Py_DECREF(u);
|
|
return NULL;
|
|
}
|
|
kind = PyUnicode_KIND(w);
|
|
data = PyUnicode_DATA(w);
|
|
len = PyUnicode_GET_LENGTH(w);
|
|
for (i = 0; i < len; i++) {
|
|
Py_UCS4 chr = PyUnicode_READ(kind, data, i);
|
|
sprintf(p, "\\U%08x", chr);
|
|
p += 10;
|
|
}
|
|
/* Should be impossible to overflow */
|
|
assert(p - buf <= PyBytes_GET_SIZE(u));
|
|
Py_DECREF(w);
|
|
} else {
|
|
*p++ = *s++;
|
|
}
|
|
}
|
|
len = p - buf;
|
|
s = buf;
|
|
|
|
const char *first_invalid_escape;
|
|
v = _PyUnicode_DecodeUnicodeEscape(s, len, NULL, &first_invalid_escape);
|
|
|
|
if (v != NULL && first_invalid_escape != NULL) {
|
|
if (warn_invalid_escape_sequence(c, n, *first_invalid_escape) < 0) {
|
|
/* We have not decref u before because first_invalid_escape points
|
|
inside u. */
|
|
Py_XDECREF(u);
|
|
Py_DECREF(v);
|
|
return NULL;
|
|
}
|
|
}
|
|
Py_XDECREF(u);
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
decode_bytes_with_escapes(struct compiling *c, const node *n, const char *s,
|
|
size_t len)
|
|
{
|
|
const char *first_invalid_escape;
|
|
PyObject *result = _PyBytes_DecodeEscape(s, len, NULL, 0, NULL,
|
|
&first_invalid_escape);
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
if (first_invalid_escape != NULL) {
|
|
if (warn_invalid_escape_sequence(c, n, *first_invalid_escape) < 0) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Shift locations for the given node and all its children by adding `lineno`
|
|
and `col_offset` to existing locations. */
|
|
static void fstring_shift_node_locations(node *n, int lineno, int col_offset)
|
|
{
|
|
n->n_col_offset = n->n_col_offset + col_offset;
|
|
for (int i = 0; i < NCH(n); ++i) {
|
|
if (n->n_lineno && n->n_lineno < CHILD(n, i)->n_lineno) {
|
|
/* Shifting column offsets unnecessary if there's been newlines. */
|
|
col_offset = 0;
|
|
}
|
|
fstring_shift_node_locations(CHILD(n, i), lineno, col_offset);
|
|
}
|
|
n->n_lineno = n->n_lineno + lineno;
|
|
}
|
|
|
|
/* Fix locations for the given node and its children.
|
|
|
|
`parent` is the enclosing node.
|
|
`n` is the node which locations are going to be fixed relative to parent.
|
|
`expr_str` is the child node's string representation, including braces.
|
|
*/
|
|
static void
|
|
fstring_fix_node_location(const node *parent, node *n, char *expr_str)
|
|
{
|
|
char *substr = NULL;
|
|
char *start;
|
|
int lines = LINENO(parent) - 1;
|
|
int cols = parent->n_col_offset;
|
|
/* Find the full fstring to fix location information in `n`. */
|
|
while (parent && parent->n_type != STRING)
|
|
parent = parent->n_child;
|
|
if (parent && parent->n_str) {
|
|
substr = strstr(parent->n_str, expr_str);
|
|
if (substr) {
|
|
start = substr;
|
|
while (start > parent->n_str) {
|
|
if (start[0] == '\n')
|
|
break;
|
|
start--;
|
|
}
|
|
cols += (int)(substr - start);
|
|
/* Fix lineno in mulitline strings. */
|
|
while ((substr = strchr(substr + 1, '\n')))
|
|
lines--;
|
|
}
|
|
}
|
|
fstring_shift_node_locations(n, lines, cols);
|
|
}
|
|
|
|
/* Compile this expression in to an expr_ty. Add parens around the
|
|
expression, in order to allow leading spaces in the expression. */
|
|
static expr_ty
|
|
fstring_compile_expr(const char *expr_start, const char *expr_end,
|
|
struct compiling *c, const node *n)
|
|
|
|
{
|
|
PyCompilerFlags cf;
|
|
node *mod_n;
|
|
mod_ty mod;
|
|
char *str;
|
|
Py_ssize_t len;
|
|
const char *s;
|
|
|
|
assert(expr_end >= expr_start);
|
|
assert(*(expr_start-1) == '{');
|
|
assert(*expr_end == '}' || *expr_end == '!' || *expr_end == ':');
|
|
|
|
/* If the substring is all whitespace, it's an error. We need to catch this
|
|
here, and not when we call PyParser_SimpleParseStringFlagsFilename,
|
|
because turning the expression '' in to '()' would go from being invalid
|
|
to valid. */
|
|
for (s = expr_start; s != expr_end; s++) {
|
|
char c = *s;
|
|
/* The Python parser ignores only the following whitespace
|
|
characters (\r already is converted to \n). */
|
|
if (!(c == ' ' || c == '\t' || c == '\n' || c == '\f')) {
|
|
break;
|
|
}
|
|
}
|
|
if (s == expr_end) {
|
|
ast_error(c, n, "f-string: empty expression not allowed");
|
|
return NULL;
|
|
}
|
|
|
|
len = expr_end - expr_start;
|
|
/* Allocate 3 extra bytes: open paren, close paren, null byte. */
|
|
str = PyMem_RawMalloc(len + 3);
|
|
if (str == NULL)
|
|
return NULL;
|
|
|
|
str[0] = '(';
|
|
memcpy(str+1, expr_start, len);
|
|
str[len+1] = ')';
|
|
str[len+2] = 0;
|
|
|
|
cf.cf_flags = PyCF_ONLY_AST;
|
|
mod_n = PyParser_SimpleParseStringFlagsFilename(str, "<fstring>",
|
|
Py_eval_input, 0);
|
|
if (!mod_n) {
|
|
PyMem_RawFree(str);
|
|
return NULL;
|
|
}
|
|
/* Reuse str to find the correct column offset. */
|
|
str[0] = '{';
|
|
str[len+1] = '}';
|
|
fstring_fix_node_location(n, mod_n, str);
|
|
mod = PyAST_FromNode(mod_n, &cf, "<fstring>", c->c_arena);
|
|
PyMem_RawFree(str);
|
|
PyNode_Free(mod_n);
|
|
if (!mod)
|
|
return NULL;
|
|
return mod->v.Expression.body;
|
|
}
|
|
|
|
/* Return -1 on error.
|
|
|
|
Return 0 if we reached the end of the literal.
|
|
|
|
Return 1 if we haven't reached the end of the literal, but we want
|
|
the caller to process the literal up to this point. Used for
|
|
doubled braces.
|
|
*/
|
|
static int
|
|
fstring_find_literal(const char **str, const char *end, int raw,
|
|
PyObject **literal, int recurse_lvl,
|
|
struct compiling *c, const node *n)
|
|
{
|
|
/* Get any literal string. It ends when we hit an un-doubled left
|
|
brace (which isn't part of a unicode name escape such as
|
|
"\N{EULER CONSTANT}"), or the end of the string. */
|
|
|
|
const char *s = *str;
|
|
const char *literal_start = s;
|
|
int result = 0;
|
|
|
|
assert(*literal == NULL);
|
|
while (s < end) {
|
|
char ch = *s++;
|
|
if (!raw && ch == '\\' && s < end) {
|
|
ch = *s++;
|
|
if (ch == 'N') {
|
|
if (s < end && *s++ == '{') {
|
|
while (s < end && *s++ != '}') {
|
|
}
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
if (ch == '{' && warn_invalid_escape_sequence(c, n, ch) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
if (ch == '{' || ch == '}') {
|
|
/* Check for doubled braces, but only at the top level. If
|
|
we checked at every level, then f'{0:{3}}' would fail
|
|
with the two closing braces. */
|
|
if (recurse_lvl == 0) {
|
|
if (s < end && *s == ch) {
|
|
/* We're going to tell the caller that the literal ends
|
|
here, but that they should continue scanning. But also
|
|
skip over the second brace when we resume scanning. */
|
|
*str = s + 1;
|
|
result = 1;
|
|
goto done;
|
|
}
|
|
|
|
/* Where a single '{' is the start of a new expression, a
|
|
single '}' is not allowed. */
|
|
if (ch == '}') {
|
|
*str = s - 1;
|
|
ast_error(c, n, "f-string: single '}' is not allowed");
|
|
return -1;
|
|
}
|
|
}
|
|
/* We're either at a '{', which means we're starting another
|
|
expression; or a '}', which means we're at the end of this
|
|
f-string (for a nested format_spec). */
|
|
s--;
|
|
break;
|
|
}
|
|
}
|
|
*str = s;
|
|
assert(s <= end);
|
|
assert(s == end || *s == '{' || *s == '}');
|
|
done:
|
|
if (literal_start != s) {
|
|
if (raw)
|
|
*literal = PyUnicode_DecodeUTF8Stateful(literal_start,
|
|
s - literal_start,
|
|
NULL, NULL);
|
|
else
|
|
*literal = decode_unicode_with_escapes(c, n, literal_start,
|
|
s - literal_start);
|
|
if (!*literal)
|
|
return -1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Forward declaration because parsing is recursive. */
|
|
static expr_ty
|
|
fstring_parse(const char **str, const char *end, int raw, int recurse_lvl,
|
|
struct compiling *c, const node *n);
|
|
|
|
/* Parse the f-string at *str, ending at end. We know *str starts an
|
|
expression (so it must be a '{'). Returns the FormattedValue node,
|
|
which includes the expression, conversion character, and
|
|
format_spec expression.
|
|
|
|
Note that I don't do a perfect job here: I don't make sure that a
|
|
closing brace doesn't match an opening paren, for example. It
|
|
doesn't need to error on all invalid expressions, just correctly
|
|
find the end of all valid ones. Any errors inside the expression
|
|
will be caught when we parse it later. */
|
|
static int
|
|
fstring_find_expr(const char **str, const char *end, int raw, int recurse_lvl,
|
|
expr_ty *expression, struct compiling *c, const node *n)
|
|
{
|
|
/* Return -1 on error, else 0. */
|
|
|
|
const char *expr_start;
|
|
const char *expr_end;
|
|
expr_ty simple_expression;
|
|
expr_ty format_spec = NULL; /* Optional format specifier. */
|
|
int conversion = -1; /* The conversion char. -1 if not specified. */
|
|
|
|
/* 0 if we're not in a string, else the quote char we're trying to
|
|
match (single or double quote). */
|
|
char quote_char = 0;
|
|
|
|
/* If we're inside a string, 1=normal, 3=triple-quoted. */
|
|
int string_type = 0;
|
|
|
|
/* Keep track of nesting level for braces/parens/brackets in
|
|
expressions. */
|
|
Py_ssize_t nested_depth = 0;
|
|
|
|
/* Can only nest one level deep. */
|
|
if (recurse_lvl >= 2) {
|
|
ast_error(c, n, "f-string: expressions nested too deeply");
|
|
return -1;
|
|
}
|
|
|
|
/* The first char must be a left brace, or we wouldn't have gotten
|
|
here. Skip over it. */
|
|
assert(**str == '{');
|
|
*str += 1;
|
|
|
|
expr_start = *str;
|
|
for (; *str < end; (*str)++) {
|
|
char ch;
|
|
|
|
/* Loop invariants. */
|
|
assert(nested_depth >= 0);
|
|
assert(*str >= expr_start && *str < end);
|
|
if (quote_char)
|
|
assert(string_type == 1 || string_type == 3);
|
|
else
|
|
assert(string_type == 0);
|
|
|
|
ch = **str;
|
|
/* Nowhere inside an expression is a backslash allowed. */
|
|
if (ch == '\\') {
|
|
/* Error: can't include a backslash character, inside
|
|
parens or strings or not. */
|
|
ast_error(c, n, "f-string expression part "
|
|
"cannot include a backslash");
|
|
return -1;
|
|
}
|
|
if (quote_char) {
|
|
/* We're inside a string. See if we're at the end. */
|
|
/* This code needs to implement the same non-error logic
|
|
as tok_get from tokenizer.c, at the letter_quote
|
|
label. To actually share that code would be a
|
|
nightmare. But, it's unlikely to change and is small,
|
|
so duplicate it here. Note we don't need to catch all
|
|
of the errors, since they'll be caught when parsing the
|
|
expression. We just need to match the non-error
|
|
cases. Thus we can ignore \n in single-quoted strings,
|
|
for example. Or non-terminated strings. */
|
|
if (ch == quote_char) {
|
|
/* Does this match the string_type (single or triple
|
|
quoted)? */
|
|
if (string_type == 3) {
|
|
if (*str+2 < end && *(*str+1) == ch && *(*str+2) == ch) {
|
|
/* We're at the end of a triple quoted string. */
|
|
*str += 2;
|
|
string_type = 0;
|
|
quote_char = 0;
|
|
continue;
|
|
}
|
|
} else {
|
|
/* We're at the end of a normal string. */
|
|
quote_char = 0;
|
|
string_type = 0;
|
|
continue;
|
|
}
|
|
}
|
|
} else if (ch == '\'' || ch == '"') {
|
|
/* Is this a triple quoted string? */
|
|
if (*str+2 < end && *(*str+1) == ch && *(*str+2) == ch) {
|
|
string_type = 3;
|
|
*str += 2;
|
|
} else {
|
|
/* Start of a normal string. */
|
|
string_type = 1;
|
|
}
|
|
/* Start looking for the end of the string. */
|
|
quote_char = ch;
|
|
} else if (ch == '[' || ch == '{' || ch == '(') {
|
|
nested_depth++;
|
|
} else if (nested_depth != 0 &&
|
|
(ch == ']' || ch == '}' || ch == ')')) {
|
|
nested_depth--;
|
|
} else if (ch == '#') {
|
|
/* Error: can't include a comment character, inside parens
|
|
or not. */
|
|
ast_error(c, n, "f-string expression part cannot include '#'");
|
|
return -1;
|
|
} else if (nested_depth == 0 &&
|
|
(ch == '!' || ch == ':' || ch == '}')) {
|
|
/* First, test for the special case of "!=". Since '=' is
|
|
not an allowed conversion character, nothing is lost in
|
|
this test. */
|
|
if (ch == '!' && *str+1 < end && *(*str+1) == '=') {
|
|
/* This isn't a conversion character, just continue. */
|
|
continue;
|
|
}
|
|
/* Normal way out of this loop. */
|
|
break;
|
|
} else {
|
|
/* Just consume this char and loop around. */
|
|
}
|
|
}
|
|
expr_end = *str;
|
|
/* If we leave this loop in a string or with mismatched parens, we
|
|
don't care. We'll get a syntax error when compiling the
|
|
expression. But, we can produce a better error message, so
|
|
let's just do that.*/
|
|
if (quote_char) {
|
|
ast_error(c, n, "f-string: unterminated string");
|
|
return -1;
|
|
}
|
|
if (nested_depth) {
|
|
ast_error(c, n, "f-string: mismatched '(', '{', or '['");
|
|
return -1;
|
|
}
|
|
|
|
if (*str >= end)
|
|
goto unexpected_end_of_string;
|
|
|
|
/* Compile the expression as soon as possible, so we show errors
|
|
related to the expression before errors related to the
|
|
conversion or format_spec. */
|
|
simple_expression = fstring_compile_expr(expr_start, expr_end, c, n);
|
|
if (!simple_expression)
|
|
return -1;
|
|
|
|
/* Check for a conversion char, if present. */
|
|
if (**str == '!') {
|
|
*str += 1;
|
|
if (*str >= end)
|
|
goto unexpected_end_of_string;
|
|
|
|
conversion = **str;
|
|
*str += 1;
|
|
|
|
/* Validate the conversion. */
|
|
if (!(conversion == 's' || conversion == 'r'
|
|
|| conversion == 'a')) {
|
|
ast_error(c, n, "f-string: invalid conversion character: "
|
|
"expected 's', 'r', or 'a'");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Check for the format spec, if present. */
|
|
if (*str >= end)
|
|
goto unexpected_end_of_string;
|
|
if (**str == ':') {
|
|
*str += 1;
|
|
if (*str >= end)
|
|
goto unexpected_end_of_string;
|
|
|
|
/* Parse the format spec. */
|
|
format_spec = fstring_parse(str, end, raw, recurse_lvl+1, c, n);
|
|
if (!format_spec)
|
|
return -1;
|
|
}
|
|
|
|
if (*str >= end || **str != '}')
|
|
goto unexpected_end_of_string;
|
|
|
|
/* We're at a right brace. Consume it. */
|
|
assert(*str < end);
|
|
assert(**str == '}');
|
|
*str += 1;
|
|
|
|
/* And now create the FormattedValue node that represents this
|
|
entire expression with the conversion and format spec. */
|
|
*expression = FormattedValue(simple_expression, conversion,
|
|
format_spec, LINENO(n), n->n_col_offset,
|
|
c->c_arena);
|
|
if (!*expression)
|
|
return -1;
|
|
|
|
return 0;
|
|
|
|
unexpected_end_of_string:
|
|
ast_error(c, n, "f-string: expecting '}'");
|
|
return -1;
|
|
}
|
|
|
|
/* Return -1 on error.
|
|
|
|
Return 0 if we have a literal (possible zero length) and an
|
|
expression (zero length if at the end of the string.
|
|
|
|
Return 1 if we have a literal, but no expression, and we want the
|
|
caller to call us again. This is used to deal with doubled
|
|
braces.
|
|
|
|
When called multiple times on the string 'a{{b{0}c', this function
|
|
will return:
|
|
|
|
1. the literal 'a{' with no expression, and a return value
|
|
of 1. Despite the fact that there's no expression, the return
|
|
value of 1 means we're not finished yet.
|
|
|
|
2. the literal 'b' and the expression '0', with a return value of
|
|
0. The fact that there's an expression means we're not finished.
|
|
|
|
3. literal 'c' with no expression and a return value of 0. The
|
|
combination of the return value of 0 with no expression means
|
|
we're finished.
|
|
*/
|
|
static int
|
|
fstring_find_literal_and_expr(const char **str, const char *end, int raw,
|
|
int recurse_lvl, PyObject **literal,
|
|
expr_ty *expression,
|
|
struct compiling *c, const node *n)
|
|
{
|
|
int result;
|
|
|
|
assert(*literal == NULL && *expression == NULL);
|
|
|
|
/* Get any literal string. */
|
|
result = fstring_find_literal(str, end, raw, literal, recurse_lvl, c, n);
|
|
if (result < 0)
|
|
goto error;
|
|
|
|
assert(result == 0 || result == 1);
|
|
|
|
if (result == 1)
|
|
/* We have a literal, but don't look at the expression. */
|
|
return 1;
|
|
|
|
if (*str >= end || **str == '}')
|
|
/* We're at the end of the string or the end of a nested
|
|
f-string: no expression. The top-level error case where we
|
|
expect to be at the end of the string but we're at a '}' is
|
|
handled later. */
|
|
return 0;
|
|
|
|
/* We must now be the start of an expression, on a '{'. */
|
|
assert(**str == '{');
|
|
|
|
if (fstring_find_expr(str, end, raw, recurse_lvl, expression, c, n) < 0)
|
|
goto error;
|
|
|
|
return 0;
|
|
|
|
error:
|
|
Py_CLEAR(*literal);
|
|
return -1;
|
|
}
|
|
|
|
#define EXPRLIST_N_CACHED 64
|
|
|
|
typedef struct {
|
|
/* Incrementally build an array of expr_ty, so be used in an
|
|
asdl_seq. Cache some small but reasonably sized number of
|
|
expr_ty's, and then after that start dynamically allocating,
|
|
doubling the number allocated each time. Note that the f-string
|
|
f'{0}a{1}' contains 3 expr_ty's: 2 FormattedValue's, and one
|
|
Str for the literal 'a'. So you add expr_ty's about twice as
|
|
fast as you add exressions in an f-string. */
|
|
|
|
Py_ssize_t allocated; /* Number we've allocated. */
|
|
Py_ssize_t size; /* Number we've used. */
|
|
expr_ty *p; /* Pointer to the memory we're actually
|
|
using. Will point to 'data' until we
|
|
start dynamically allocating. */
|
|
expr_ty data[EXPRLIST_N_CACHED];
|
|
} ExprList;
|
|
|
|
#ifdef NDEBUG
|
|
#define ExprList_check_invariants(l)
|
|
#else
|
|
static void
|
|
ExprList_check_invariants(ExprList *l)
|
|
{
|
|
/* Check our invariants. Make sure this object is "live", and
|
|
hasn't been deallocated. */
|
|
assert(l->size >= 0);
|
|
assert(l->p != NULL);
|
|
if (l->size <= EXPRLIST_N_CACHED)
|
|
assert(l->data == l->p);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ExprList_Init(ExprList *l)
|
|
{
|
|
l->allocated = EXPRLIST_N_CACHED;
|
|
l->size = 0;
|
|
|
|
/* Until we start allocating dynamically, p points to data. */
|
|
l->p = l->data;
|
|
|
|
ExprList_check_invariants(l);
|
|
}
|
|
|
|
static int
|
|
ExprList_Append(ExprList *l, expr_ty exp)
|
|
{
|
|
ExprList_check_invariants(l);
|
|
if (l->size >= l->allocated) {
|
|
/* We need to alloc (or realloc) the memory. */
|
|
Py_ssize_t new_size = l->allocated * 2;
|
|
|
|
/* See if we've ever allocated anything dynamically. */
|
|
if (l->p == l->data) {
|
|
Py_ssize_t i;
|
|
/* We're still using the cached data. Switch to
|
|
alloc-ing. */
|
|
l->p = PyMem_RawMalloc(sizeof(expr_ty) * new_size);
|
|
if (!l->p)
|
|
return -1;
|
|
/* Copy the cached data into the new buffer. */
|
|
for (i = 0; i < l->size; i++)
|
|
l->p[i] = l->data[i];
|
|
} else {
|
|
/* Just realloc. */
|
|
expr_ty *tmp = PyMem_RawRealloc(l->p, sizeof(expr_ty) * new_size);
|
|
if (!tmp) {
|
|
PyMem_RawFree(l->p);
|
|
l->p = NULL;
|
|
return -1;
|
|
}
|
|
l->p = tmp;
|
|
}
|
|
|
|
l->allocated = new_size;
|
|
assert(l->allocated == 2 * l->size);
|
|
}
|
|
|
|
l->p[l->size++] = exp;
|
|
|
|
ExprList_check_invariants(l);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ExprList_Dealloc(ExprList *l)
|
|
{
|
|
ExprList_check_invariants(l);
|
|
|
|
/* If there's been an error, or we've never dynamically allocated,
|
|
do nothing. */
|
|
if (!l->p || l->p == l->data) {
|
|
/* Do nothing. */
|
|
} else {
|
|
/* We have dynamically allocated. Free the memory. */
|
|
PyMem_RawFree(l->p);
|
|
}
|
|
l->p = NULL;
|
|
l->size = -1;
|
|
}
|
|
|
|
static asdl_seq *
|
|
ExprList_Finish(ExprList *l, PyArena *arena)
|
|
{
|
|
asdl_seq *seq;
|
|
|
|
ExprList_check_invariants(l);
|
|
|
|
/* Allocate the asdl_seq and copy the expressions in to it. */
|
|
seq = _Py_asdl_seq_new(l->size, arena);
|
|
if (seq) {
|
|
Py_ssize_t i;
|
|
for (i = 0; i < l->size; i++)
|
|
asdl_seq_SET(seq, i, l->p[i]);
|
|
}
|
|
ExprList_Dealloc(l);
|
|
return seq;
|
|
}
|
|
|
|
/* The FstringParser is designed to add a mix of strings and
|
|
f-strings, and concat them together as needed. Ultimately, it
|
|
generates an expr_ty. */
|
|
typedef struct {
|
|
PyObject *last_str;
|
|
ExprList expr_list;
|
|
int fmode;
|
|
} FstringParser;
|
|
|
|
#ifdef NDEBUG
|
|
#define FstringParser_check_invariants(state)
|
|
#else
|
|
static void
|
|
FstringParser_check_invariants(FstringParser *state)
|
|
{
|
|
if (state->last_str)
|
|
assert(PyUnicode_CheckExact(state->last_str));
|
|
ExprList_check_invariants(&state->expr_list);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
FstringParser_Init(FstringParser *state)
|
|
{
|
|
state->last_str = NULL;
|
|
state->fmode = 0;
|
|
ExprList_Init(&state->expr_list);
|
|
FstringParser_check_invariants(state);
|
|
}
|
|
|
|
static void
|
|
FstringParser_Dealloc(FstringParser *state)
|
|
{
|
|
FstringParser_check_invariants(state);
|
|
|
|
Py_XDECREF(state->last_str);
|
|
ExprList_Dealloc(&state->expr_list);
|
|
}
|
|
|
|
/* Make a Str node, but decref the PyUnicode object being added. */
|
|
static expr_ty
|
|
make_str_node_and_del(PyObject **str, struct compiling *c, const node* n)
|
|
{
|
|
PyObject *s = *str;
|
|
*str = NULL;
|
|
assert(PyUnicode_CheckExact(s));
|
|
if (PyArena_AddPyObject(c->c_arena, s) < 0) {
|
|
Py_DECREF(s);
|
|
return NULL;
|
|
}
|
|
return Str(s, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
/* Add a non-f-string (that is, a regular literal string). str is
|
|
decref'd. */
|
|
static int
|
|
FstringParser_ConcatAndDel(FstringParser *state, PyObject *str)
|
|
{
|
|
FstringParser_check_invariants(state);
|
|
|
|
assert(PyUnicode_CheckExact(str));
|
|
|
|
if (PyUnicode_GET_LENGTH(str) == 0) {
|
|
Py_DECREF(str);
|
|
return 0;
|
|
}
|
|
|
|
if (!state->last_str) {
|
|
/* We didn't have a string before, so just remember this one. */
|
|
state->last_str = str;
|
|
} else {
|
|
/* Concatenate this with the previous string. */
|
|
PyUnicode_AppendAndDel(&state->last_str, str);
|
|
if (!state->last_str)
|
|
return -1;
|
|
}
|
|
FstringParser_check_invariants(state);
|
|
return 0;
|
|
}
|
|
|
|
/* Parse an f-string. The f-string is in *str to end, with no
|
|
'f' or quotes. */
|
|
static int
|
|
FstringParser_ConcatFstring(FstringParser *state, const char **str,
|
|
const char *end, int raw, int recurse_lvl,
|
|
struct compiling *c, const node *n)
|
|
{
|
|
FstringParser_check_invariants(state);
|
|
state->fmode = 1;
|
|
|
|
/* Parse the f-string. */
|
|
while (1) {
|
|
PyObject *literal = NULL;
|
|
expr_ty expression = NULL;
|
|
|
|
/* If there's a zero length literal in front of the
|
|
expression, literal will be NULL. If we're at the end of
|
|
the f-string, expression will be NULL (unless result == 1,
|
|
see below). */
|
|
int result = fstring_find_literal_and_expr(str, end, raw, recurse_lvl,
|
|
&literal, &expression,
|
|
c, n);
|
|
if (result < 0)
|
|
return -1;
|
|
|
|
/* Add the literal, if any. */
|
|
if (!literal) {
|
|
/* Do nothing. Just leave last_str alone (and possibly
|
|
NULL). */
|
|
} else if (!state->last_str) {
|
|
/* Note that the literal can be zero length, if the
|
|
input string is "\\\n" or "\\\r", among others. */
|
|
state->last_str = literal;
|
|
literal = NULL;
|
|
} else {
|
|
/* We have a literal, concatenate it. */
|
|
assert(PyUnicode_GET_LENGTH(literal) != 0);
|
|
if (FstringParser_ConcatAndDel(state, literal) < 0)
|
|
return -1;
|
|
literal = NULL;
|
|
}
|
|
|
|
/* We've dealt with the literal now. It can't be leaked on further
|
|
errors. */
|
|
assert(literal == NULL);
|
|
|
|
/* See if we should just loop around to get the next literal
|
|
and expression, while ignoring the expression this
|
|
time. This is used for un-doubling braces, as an
|
|
optimization. */
|
|
if (result == 1)
|
|
continue;
|
|
|
|
if (!expression)
|
|
/* We're done with this f-string. */
|
|
break;
|
|
|
|
/* We know we have an expression. Convert any existing string
|
|
to a Str node. */
|
|
if (!state->last_str) {
|
|
/* Do nothing. No previous literal. */
|
|
} else {
|
|
/* Convert the existing last_str literal to a Str node. */
|
|
expr_ty str = make_str_node_and_del(&state->last_str, c, n);
|
|
if (!str || ExprList_Append(&state->expr_list, str) < 0)
|
|
return -1;
|
|
}
|
|
|
|
if (ExprList_Append(&state->expr_list, expression) < 0)
|
|
return -1;
|
|
}
|
|
|
|
/* If recurse_lvl is zero, then we must be at the end of the
|
|
string. Otherwise, we must be at a right brace. */
|
|
|
|
if (recurse_lvl == 0 && *str < end-1) {
|
|
ast_error(c, n, "f-string: unexpected end of string");
|
|
return -1;
|
|
}
|
|
if (recurse_lvl != 0 && **str != '}') {
|
|
ast_error(c, n, "f-string: expecting '}'");
|
|
return -1;
|
|
}
|
|
|
|
FstringParser_check_invariants(state);
|
|
return 0;
|
|
}
|
|
|
|
/* Convert the partial state reflected in last_str and expr_list to an
|
|
expr_ty. The expr_ty can be a Str, or a JoinedStr. */
|
|
static expr_ty
|
|
FstringParser_Finish(FstringParser *state, struct compiling *c,
|
|
const node *n)
|
|
{
|
|
asdl_seq *seq;
|
|
|
|
FstringParser_check_invariants(state);
|
|
|
|
/* If we're just a constant string with no expressions, return
|
|
that. */
|
|
if (!state->fmode) {
|
|
assert(!state->expr_list.size);
|
|
if (!state->last_str) {
|
|
/* Create a zero length string. */
|
|
state->last_str = PyUnicode_FromStringAndSize(NULL, 0);
|
|
if (!state->last_str)
|
|
goto error;
|
|
}
|
|
return make_str_node_and_del(&state->last_str, c, n);
|
|
}
|
|
|
|
/* Create a Str node out of last_str, if needed. It will be the
|
|
last node in our expression list. */
|
|
if (state->last_str) {
|
|
expr_ty str = make_str_node_and_del(&state->last_str, c, n);
|
|
if (!str || ExprList_Append(&state->expr_list, str) < 0)
|
|
goto error;
|
|
}
|
|
/* This has already been freed. */
|
|
assert(state->last_str == NULL);
|
|
|
|
seq = ExprList_Finish(&state->expr_list, c->c_arena);
|
|
if (!seq)
|
|
goto error;
|
|
|
|
return JoinedStr(seq, LINENO(n), n->n_col_offset, c->c_arena);
|
|
|
|
error:
|
|
FstringParser_Dealloc(state);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given an f-string (with no 'f' or quotes) that's in *str and ends
|
|
at end, parse it into an expr_ty. Return NULL on error. Adjust
|
|
str to point past the parsed portion. */
|
|
static expr_ty
|
|
fstring_parse(const char **str, const char *end, int raw, int recurse_lvl,
|
|
struct compiling *c, const node *n)
|
|
{
|
|
FstringParser state;
|
|
|
|
FstringParser_Init(&state);
|
|
if (FstringParser_ConcatFstring(&state, str, end, raw, recurse_lvl,
|
|
c, n) < 0) {
|
|
FstringParser_Dealloc(&state);
|
|
return NULL;
|
|
}
|
|
|
|
return FstringParser_Finish(&state, c, n);
|
|
}
|
|
|
|
/* n is a Python string literal, including the bracketing quote
|
|
characters, and r, b, u, &/or f prefixes (if any), and embedded
|
|
escape sequences (if any). parsestr parses it, and sets *result to
|
|
decoded Python string object. If the string is an f-string, set
|
|
*fstr and *fstrlen to the unparsed string object. Return 0 if no
|
|
errors occurred.
|
|
*/
|
|
static int
|
|
parsestr(struct compiling *c, const node *n, int *bytesmode, int *rawmode,
|
|
PyObject **result, const char **fstr, Py_ssize_t *fstrlen)
|
|
{
|
|
size_t len;
|
|
const char *s = STR(n);
|
|
int quote = Py_CHARMASK(*s);
|
|
int fmode = 0;
|
|
*bytesmode = 0;
|
|
*rawmode = 0;
|
|
*result = NULL;
|
|
*fstr = NULL;
|
|
if (Py_ISALPHA(quote)) {
|
|
while (!*bytesmode || !*rawmode) {
|
|
if (quote == 'b' || quote == 'B') {
|
|
quote = *++s;
|
|
*bytesmode = 1;
|
|
}
|
|
else if (quote == 'u' || quote == 'U') {
|
|
quote = *++s;
|
|
}
|
|
else if (quote == 'r' || quote == 'R') {
|
|
quote = *++s;
|
|
*rawmode = 1;
|
|
}
|
|
else if (quote == 'f' || quote == 'F') {
|
|
quote = *++s;
|
|
fmode = 1;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (fmode && *bytesmode) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
if (quote != '\'' && quote != '\"') {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
/* Skip the leading quote char. */
|
|
s++;
|
|
len = strlen(s);
|
|
if (len > INT_MAX) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"string to parse is too long");
|
|
return -1;
|
|
}
|
|
if (s[--len] != quote) {
|
|
/* Last quote char must match the first. */
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
if (len >= 4 && s[0] == quote && s[1] == quote) {
|
|
/* A triple quoted string. We've already skipped one quote at
|
|
the start and one at the end of the string. Now skip the
|
|
two at the start. */
|
|
s += 2;
|
|
len -= 2;
|
|
/* And check that the last two match. */
|
|
if (s[--len] != quote || s[--len] != quote) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (fmode) {
|
|
/* Just return the bytes. The caller will parse the resulting
|
|
string. */
|
|
*fstr = s;
|
|
*fstrlen = len;
|
|
return 0;
|
|
}
|
|
|
|
/* Not an f-string. */
|
|
/* Avoid invoking escape decoding routines if possible. */
|
|
*rawmode = *rawmode || strchr(s, '\\') == NULL;
|
|
if (*bytesmode) {
|
|
/* Disallow non-ASCII characters. */
|
|
const char *ch;
|
|
for (ch = s; *ch; ch++) {
|
|
if (Py_CHARMASK(*ch) >= 0x80) {
|
|
ast_error(c, n, "bytes can only contain ASCII "
|
|
"literal characters.");
|
|
return -1;
|
|
}
|
|
}
|
|
if (*rawmode)
|
|
*result = PyBytes_FromStringAndSize(s, len);
|
|
else
|
|
*result = decode_bytes_with_escapes(c, n, s, len);
|
|
} else {
|
|
if (*rawmode)
|
|
*result = PyUnicode_DecodeUTF8Stateful(s, len, NULL, NULL);
|
|
else
|
|
*result = decode_unicode_with_escapes(c, n, s, len);
|
|
}
|
|
return *result == NULL ? -1 : 0;
|
|
}
|
|
|
|
/* Accepts a STRING+ atom, and produces an expr_ty node. Run through
|
|
each STRING atom, and process it as needed. For bytes, just
|
|
concatenate them together, and the result will be a Bytes node. For
|
|
normal strings and f-strings, concatenate them together. The result
|
|
will be a Str node if there were no f-strings; a FormattedValue
|
|
node if there's just an f-string (with no leading or trailing
|
|
literals), or a JoinedStr node if there are multiple f-strings or
|
|
any literals involved. */
|
|
static expr_ty
|
|
parsestrplus(struct compiling *c, const node *n)
|
|
{
|
|
int bytesmode = 0;
|
|
PyObject *bytes_str = NULL;
|
|
int i;
|
|
|
|
FstringParser state;
|
|
FstringParser_Init(&state);
|
|
|
|
for (i = 0; i < NCH(n); i++) {
|
|
int this_bytesmode;
|
|
int this_rawmode;
|
|
PyObject *s;
|
|
const char *fstr;
|
|
Py_ssize_t fstrlen = -1; /* Silence a compiler warning. */
|
|
|
|
REQ(CHILD(n, i), STRING);
|
|
if (parsestr(c, CHILD(n, i), &this_bytesmode, &this_rawmode, &s,
|
|
&fstr, &fstrlen) != 0)
|
|
goto error;
|
|
|
|
/* Check that we're not mixing bytes with unicode. */
|
|
if (i != 0 && bytesmode != this_bytesmode) {
|
|
ast_error(c, n, "cannot mix bytes and nonbytes literals");
|
|
/* s is NULL if the current string part is an f-string. */
|
|
Py_XDECREF(s);
|
|
goto error;
|
|
}
|
|
bytesmode = this_bytesmode;
|
|
|
|
if (fstr != NULL) {
|
|
int result;
|
|
assert(s == NULL && !bytesmode);
|
|
/* This is an f-string. Parse and concatenate it. */
|
|
result = FstringParser_ConcatFstring(&state, &fstr, fstr+fstrlen,
|
|
this_rawmode, 0, c, n);
|
|
if (result < 0)
|
|
goto error;
|
|
} else {
|
|
/* A string or byte string. */
|
|
assert(s != NULL && fstr == NULL);
|
|
|
|
assert(bytesmode ? PyBytes_CheckExact(s) :
|
|
PyUnicode_CheckExact(s));
|
|
|
|
if (bytesmode) {
|
|
/* For bytes, concat as we go. */
|
|
if (i == 0) {
|
|
/* First time, just remember this value. */
|
|
bytes_str = s;
|
|
} else {
|
|
PyBytes_ConcatAndDel(&bytes_str, s);
|
|
if (!bytes_str)
|
|
goto error;
|
|
}
|
|
} else {
|
|
/* This is a regular string. Concatenate it. */
|
|
if (FstringParser_ConcatAndDel(&state, s) < 0)
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
if (bytesmode) {
|
|
/* Just return the bytes object and we're done. */
|
|
if (PyArena_AddPyObject(c->c_arena, bytes_str) < 0)
|
|
goto error;
|
|
return Bytes(bytes_str, LINENO(n), n->n_col_offset, c->c_arena);
|
|
}
|
|
|
|
/* We're not a bytes string, bytes_str should never have been set. */
|
|
assert(bytes_str == NULL);
|
|
|
|
return FstringParser_Finish(&state, c, n);
|
|
|
|
error:
|
|
Py_XDECREF(bytes_str);
|
|
FstringParser_Dealloc(&state);
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *
|
|
_PyAST_GetDocString(asdl_seq *body)
|
|
{
|
|
if (!asdl_seq_LEN(body)) {
|
|
return NULL;
|
|
}
|
|
stmt_ty st = (stmt_ty)asdl_seq_GET(body, 0);
|
|
if (st->kind != Expr_kind) {
|
|
return NULL;
|
|
}
|
|
expr_ty e = st->v.Expr.value;
|
|
if (e->kind == Str_kind) {
|
|
return e->v.Str.s;
|
|
}
|
|
if (e->kind == Constant_kind && PyUnicode_CheckExact(e->v.Constant.value)) {
|
|
return e->v.Constant.value;
|
|
}
|
|
return NULL;
|
|
}
|