cpython/Lib/test/test_time.py

1001 lines
38 KiB
Python

from test import support
import enum
import locale
import platform
import sys
import sysconfig
import time
import unittest
try:
import threading
except ImportError:
threading = None
try:
import _testcapi
except ImportError:
_testcapi = None
# Max year is only limited by the size of C int.
SIZEOF_INT = sysconfig.get_config_var('SIZEOF_INT') or 4
TIME_MAXYEAR = (1 << 8 * SIZEOF_INT - 1) - 1
TIME_MINYEAR = -TIME_MAXYEAR - 1
US_TO_NS = 10 ** 3
MS_TO_NS = 10 ** 6
SEC_TO_NS = 10 ** 9
class _PyTime(enum.IntEnum):
# Round towards minus infinity (-inf)
ROUND_FLOOR = 0
# Round towards infinity (+inf)
ROUND_CEILING = 1
ALL_ROUNDING_METHODS = (_PyTime.ROUND_FLOOR, _PyTime.ROUND_CEILING)
class TimeTestCase(unittest.TestCase):
def setUp(self):
self.t = time.time()
def test_data_attributes(self):
time.altzone
time.daylight
time.timezone
time.tzname
def test_time(self):
time.time()
info = time.get_clock_info('time')
self.assertFalse(info.monotonic)
self.assertTrue(info.adjustable)
def test_clock(self):
time.clock()
info = time.get_clock_info('clock')
self.assertTrue(info.monotonic)
self.assertFalse(info.adjustable)
@unittest.skipUnless(hasattr(time, 'clock_gettime'),
'need time.clock_gettime()')
def test_clock_realtime(self):
time.clock_gettime(time.CLOCK_REALTIME)
@unittest.skipUnless(hasattr(time, 'clock_gettime'),
'need time.clock_gettime()')
@unittest.skipUnless(hasattr(time, 'CLOCK_MONOTONIC'),
'need time.CLOCK_MONOTONIC')
def test_clock_monotonic(self):
a = time.clock_gettime(time.CLOCK_MONOTONIC)
b = time.clock_gettime(time.CLOCK_MONOTONIC)
self.assertLessEqual(a, b)
@unittest.skipUnless(hasattr(time, 'clock_getres'),
'need time.clock_getres()')
def test_clock_getres(self):
res = time.clock_getres(time.CLOCK_REALTIME)
self.assertGreater(res, 0.0)
self.assertLessEqual(res, 1.0)
@unittest.skipUnless(hasattr(time, 'clock_settime'),
'need time.clock_settime()')
def test_clock_settime(self):
t = time.clock_gettime(time.CLOCK_REALTIME)
try:
time.clock_settime(time.CLOCK_REALTIME, t)
except PermissionError:
pass
if hasattr(time, 'CLOCK_MONOTONIC'):
self.assertRaises(OSError,
time.clock_settime, time.CLOCK_MONOTONIC, 0)
def test_conversions(self):
self.assertEqual(time.ctime(self.t),
time.asctime(time.localtime(self.t)))
self.assertEqual(int(time.mktime(time.localtime(self.t))),
int(self.t))
def test_sleep(self):
self.assertRaises(ValueError, time.sleep, -2)
self.assertRaises(ValueError, time.sleep, -1)
time.sleep(1.2)
def test_strftime(self):
tt = time.gmtime(self.t)
for directive in ('a', 'A', 'b', 'B', 'c', 'd', 'H', 'I',
'j', 'm', 'M', 'p', 'S',
'U', 'w', 'W', 'x', 'X', 'y', 'Y', 'Z', '%'):
format = ' %' + directive
try:
time.strftime(format, tt)
except ValueError:
self.fail('conversion specifier: %r failed.' % format)
def _bounds_checking(self, func):
# Make sure that strftime() checks the bounds of the various parts
# of the time tuple (0 is valid for *all* values).
# The year field is tested by other test cases above
# Check month [1, 12] + zero support
func((1900, 0, 1, 0, 0, 0, 0, 1, -1))
func((1900, 12, 1, 0, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, -1, 1, 0, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 13, 1, 0, 0, 0, 0, 1, -1))
# Check day of month [1, 31] + zero support
func((1900, 1, 0, 0, 0, 0, 0, 1, -1))
func((1900, 1, 31, 0, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, -1, 0, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 32, 0, 0, 0, 0, 1, -1))
# Check hour [0, 23]
func((1900, 1, 1, 23, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, -1, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 24, 0, 0, 0, 1, -1))
# Check minute [0, 59]
func((1900, 1, 1, 0, 59, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, -1, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 60, 0, 0, 1, -1))
# Check second [0, 61]
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 0, -1, 0, 1, -1))
# C99 only requires allowing for one leap second, but Python's docs say
# allow two leap seconds (0..61)
func((1900, 1, 1, 0, 0, 60, 0, 1, -1))
func((1900, 1, 1, 0, 0, 61, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 0, 62, 0, 1, -1))
# No check for upper-bound day of week;
# value forced into range by a ``% 7`` calculation.
# Start check at -2 since gettmarg() increments value before taking
# modulo.
self.assertEqual(func((1900, 1, 1, 0, 0, 0, -1, 1, -1)),
func((1900, 1, 1, 0, 0, 0, +6, 1, -1)))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 0, 0, -2, 1, -1))
# Check day of the year [1, 366] + zero support
func((1900, 1, 1, 0, 0, 0, 0, 0, -1))
func((1900, 1, 1, 0, 0, 0, 0, 366, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 0, 0, 0, -1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 0, 0, 0, 367, -1))
def test_strftime_bounding_check(self):
self._bounds_checking(lambda tup: time.strftime('', tup))
def test_strftime_format_check(self):
# Test that strftime does not crash on invalid format strings
# that may trigger a buffer overread. When not triggered,
# strftime may succeed or raise ValueError depending on
# the platform.
for x in [ '', 'A', '%A', '%AA' ]:
for y in range(0x0, 0x10):
for z in [ '%', 'A%', 'AA%', '%A%', 'A%A%', '%#' ]:
try:
time.strftime(x * y + z)
except ValueError:
pass
def test_default_values_for_zero(self):
# Make sure that using all zeros uses the proper default
# values. No test for daylight savings since strftime() does
# not change output based on its value and no test for year
# because systems vary in their support for year 0.
expected = "2000 01 01 00 00 00 1 001"
with support.check_warnings():
result = time.strftime("%Y %m %d %H %M %S %w %j", (2000,)+(0,)*8)
self.assertEqual(expected, result)
def test_strptime(self):
# Should be able to go round-trip from strftime to strptime without
# raising an exception.
tt = time.gmtime(self.t)
for directive in ('a', 'A', 'b', 'B', 'c', 'd', 'H', 'I',
'j', 'm', 'M', 'p', 'S',
'U', 'w', 'W', 'x', 'X', 'y', 'Y', 'Z', '%'):
format = '%' + directive
strf_output = time.strftime(format, tt)
try:
time.strptime(strf_output, format)
except ValueError:
self.fail("conversion specifier %r failed with '%s' input." %
(format, strf_output))
def test_strptime_bytes(self):
# Make sure only strings are accepted as arguments to strptime.
self.assertRaises(TypeError, time.strptime, b'2009', "%Y")
self.assertRaises(TypeError, time.strptime, '2009', b'%Y')
def test_strptime_exception_context(self):
# check that this doesn't chain exceptions needlessly (see #17572)
with self.assertRaises(ValueError) as e:
time.strptime('', '%D')
self.assertIs(e.exception.__suppress_context__, True)
# additional check for IndexError branch (issue #19545)
with self.assertRaises(ValueError) as e:
time.strptime('19', '%Y %')
self.assertIs(e.exception.__suppress_context__, True)
def test_asctime(self):
time.asctime(time.gmtime(self.t))
# Max year is only limited by the size of C int.
for bigyear in TIME_MAXYEAR, TIME_MINYEAR:
asc = time.asctime((bigyear, 6, 1) + (0,) * 6)
self.assertEqual(asc[-len(str(bigyear)):], str(bigyear))
self.assertRaises(OverflowError, time.asctime,
(TIME_MAXYEAR + 1,) + (0,) * 8)
self.assertRaises(OverflowError, time.asctime,
(TIME_MINYEAR - 1,) + (0,) * 8)
self.assertRaises(TypeError, time.asctime, 0)
self.assertRaises(TypeError, time.asctime, ())
self.assertRaises(TypeError, time.asctime, (0,) * 10)
def test_asctime_bounding_check(self):
self._bounds_checking(time.asctime)
def test_ctime(self):
t = time.mktime((1973, 9, 16, 1, 3, 52, 0, 0, -1))
self.assertEqual(time.ctime(t), 'Sun Sep 16 01:03:52 1973')
t = time.mktime((2000, 1, 1, 0, 0, 0, 0, 0, -1))
self.assertEqual(time.ctime(t), 'Sat Jan 1 00:00:00 2000')
for year in [-100, 100, 1000, 2000, 2050, 10000]:
try:
testval = time.mktime((year, 1, 10) + (0,)*6)
except (ValueError, OverflowError):
# If mktime fails, ctime will fail too. This may happen
# on some platforms.
pass
else:
self.assertEqual(time.ctime(testval)[20:], str(year))
@unittest.skipUnless(hasattr(time, "tzset"),
"time module has no attribute tzset")
def test_tzset(self):
from os import environ
# Epoch time of midnight Dec 25th 2002. Never DST in northern
# hemisphere.
xmas2002 = 1040774400.0
# These formats are correct for 2002, and possibly future years
# This format is the 'standard' as documented at:
# http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap08.html
# They are also documented in the tzset(3) man page on most Unix
# systems.
eastern = 'EST+05EDT,M4.1.0,M10.5.0'
victoria = 'AEST-10AEDT-11,M10.5.0,M3.5.0'
utc='UTC+0'
org_TZ = environ.get('TZ',None)
try:
# Make sure we can switch to UTC time and results are correct
# Note that unknown timezones default to UTC.
# Note that altzone is undefined in UTC, as there is no DST
environ['TZ'] = eastern
time.tzset()
environ['TZ'] = utc
time.tzset()
self.assertEqual(
time.gmtime(xmas2002), time.localtime(xmas2002)
)
self.assertEqual(time.daylight, 0)
self.assertEqual(time.timezone, 0)
self.assertEqual(time.localtime(xmas2002).tm_isdst, 0)
# Make sure we can switch to US/Eastern
environ['TZ'] = eastern
time.tzset()
self.assertNotEqual(time.gmtime(xmas2002), time.localtime(xmas2002))
self.assertEqual(time.tzname, ('EST', 'EDT'))
self.assertEqual(len(time.tzname), 2)
self.assertEqual(time.daylight, 1)
self.assertEqual(time.timezone, 18000)
self.assertEqual(time.altzone, 14400)
self.assertEqual(time.localtime(xmas2002).tm_isdst, 0)
self.assertEqual(len(time.tzname), 2)
# Now go to the southern hemisphere.
environ['TZ'] = victoria
time.tzset()
self.assertNotEqual(time.gmtime(xmas2002), time.localtime(xmas2002))
# Issue #11886: Australian Eastern Standard Time (UTC+10) is called
# "EST" (as Eastern Standard Time, UTC-5) instead of "AEST"
# (non-DST timezone), and "EDT" instead of "AEDT" (DST timezone),
# on some operating systems (e.g. FreeBSD), which is wrong. See for
# example this bug:
# http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=93810
self.assertIn(time.tzname[0], ('AEST' 'EST'), time.tzname[0])
self.assertTrue(time.tzname[1] in ('AEDT', 'EDT'), str(time.tzname[1]))
self.assertEqual(len(time.tzname), 2)
self.assertEqual(time.daylight, 1)
self.assertEqual(time.timezone, -36000)
self.assertEqual(time.altzone, -39600)
self.assertEqual(time.localtime(xmas2002).tm_isdst, 1)
finally:
# Repair TZ environment variable in case any other tests
# rely on it.
if org_TZ is not None:
environ['TZ'] = org_TZ
elif 'TZ' in environ:
del environ['TZ']
time.tzset()
def test_insane_timestamps(self):
# It's possible that some platform maps time_t to double,
# and that this test will fail there. This test should
# exempt such platforms (provided they return reasonable
# results!).
for func in time.ctime, time.gmtime, time.localtime:
for unreasonable in -1e200, 1e200:
self.assertRaises(OverflowError, func, unreasonable)
def test_ctime_without_arg(self):
# Not sure how to check the values, since the clock could tick
# at any time. Make sure these are at least accepted and
# don't raise errors.
time.ctime()
time.ctime(None)
def test_gmtime_without_arg(self):
gt0 = time.gmtime()
gt1 = time.gmtime(None)
t0 = time.mktime(gt0)
t1 = time.mktime(gt1)
self.assertAlmostEqual(t1, t0, delta=0.2)
def test_localtime_without_arg(self):
lt0 = time.localtime()
lt1 = time.localtime(None)
t0 = time.mktime(lt0)
t1 = time.mktime(lt1)
self.assertAlmostEqual(t1, t0, delta=0.2)
def test_mktime(self):
# Issue #1726687
for t in (-2, -1, 0, 1):
if sys.platform.startswith('aix') and t == -1:
# Issue #11188, #19748: mktime() returns -1 on error. On Linux,
# the tm_wday field is used as a sentinel () to detect if -1 is
# really an error or a valid timestamp. On AIX, tm_wday is
# unchanged even on success and so cannot be used as a
# sentinel.
continue
try:
tt = time.localtime(t)
except (OverflowError, OSError):
pass
else:
self.assertEqual(time.mktime(tt), t)
# Issue #13309: passing extreme values to mktime() or localtime()
# borks the glibc's internal timezone data.
@unittest.skipUnless(platform.libc_ver()[0] != 'glibc',
"disabled because of a bug in glibc. Issue #13309")
def test_mktime_error(self):
# It may not be possible to reliably make mktime return error
# on all platfom. This will make sure that no other exception
# than OverflowError is raised for an extreme value.
tt = time.gmtime(self.t)
tzname = time.strftime('%Z', tt)
self.assertNotEqual(tzname, 'LMT')
try:
time.mktime((-1, 1, 1, 0, 0, 0, -1, -1, -1))
except OverflowError:
pass
self.assertEqual(time.strftime('%Z', tt), tzname)
@unittest.skipUnless(hasattr(time, 'monotonic'),
'need time.monotonic')
def test_monotonic(self):
# monotonic() should not go backward
times = [time.monotonic() for n in range(100)]
t1 = times[0]
for t2 in times[1:]:
self.assertGreaterEqual(t2, t1, "times=%s" % times)
t1 = t2
# monotonic() includes time elapsed during a sleep
t1 = time.monotonic()
time.sleep(0.5)
t2 = time.monotonic()
dt = t2 - t1
self.assertGreater(t2, t1)
# Issue #20101: On some Windows machines, dt may be slightly low
self.assertTrue(0.45 <= dt <= 1.0, dt)
# monotonic() is a monotonic but non adjustable clock
info = time.get_clock_info('monotonic')
self.assertTrue(info.monotonic)
self.assertFalse(info.adjustable)
def test_perf_counter(self):
time.perf_counter()
def test_process_time(self):
# process_time() should not include time spend during a sleep
start = time.process_time()
time.sleep(0.100)
stop = time.process_time()
# use 20 ms because process_time() has usually a resolution of 15 ms
# on Windows
self.assertLess(stop - start, 0.020)
info = time.get_clock_info('process_time')
self.assertTrue(info.monotonic)
self.assertFalse(info.adjustable)
@unittest.skipUnless(hasattr(time, 'monotonic'),
'need time.monotonic')
@unittest.skipUnless(hasattr(time, 'clock_settime'),
'need time.clock_settime')
def test_monotonic_settime(self):
t1 = time.monotonic()
realtime = time.clock_gettime(time.CLOCK_REALTIME)
# jump backward with an offset of 1 hour
try:
time.clock_settime(time.CLOCK_REALTIME, realtime - 3600)
except PermissionError as err:
self.skipTest(err)
t2 = time.monotonic()
time.clock_settime(time.CLOCK_REALTIME, realtime)
# monotonic must not be affected by system clock updates
self.assertGreaterEqual(t2, t1)
def test_localtime_failure(self):
# Issue #13847: check for localtime() failure
invalid_time_t = None
for time_t in (-1, 2**30, 2**33, 2**60):
try:
time.localtime(time_t)
except OverflowError:
self.skipTest("need 64-bit time_t")
except OSError:
invalid_time_t = time_t
break
if invalid_time_t is None:
self.skipTest("unable to find an invalid time_t value")
self.assertRaises(OSError, time.localtime, invalid_time_t)
self.assertRaises(OSError, time.ctime, invalid_time_t)
def test_get_clock_info(self):
clocks = ['clock', 'perf_counter', 'process_time', 'time']
if hasattr(time, 'monotonic'):
clocks.append('monotonic')
for name in clocks:
info = time.get_clock_info(name)
#self.assertIsInstance(info, dict)
self.assertIsInstance(info.implementation, str)
self.assertNotEqual(info.implementation, '')
self.assertIsInstance(info.monotonic, bool)
self.assertIsInstance(info.resolution, float)
# 0.0 < resolution <= 1.0
self.assertGreater(info.resolution, 0.0)
self.assertLessEqual(info.resolution, 1.0)
self.assertIsInstance(info.adjustable, bool)
self.assertRaises(ValueError, time.get_clock_info, 'xxx')
class TestLocale(unittest.TestCase):
def setUp(self):
self.oldloc = locale.setlocale(locale.LC_ALL)
def tearDown(self):
locale.setlocale(locale.LC_ALL, self.oldloc)
def test_bug_3061(self):
try:
tmp = locale.setlocale(locale.LC_ALL, "fr_FR")
except locale.Error:
self.skipTest('could not set locale.LC_ALL to fr_FR')
# This should not cause an exception
time.strftime("%B", (2009,2,1,0,0,0,0,0,0))
class _TestAsctimeYear:
_format = '%d'
def yearstr(self, y):
return time.asctime((y,) + (0,) * 8).split()[-1]
def test_large_year(self):
# Check that it doesn't crash for year > 9999
self.assertEqual(self.yearstr(12345), '12345')
self.assertEqual(self.yearstr(123456789), '123456789')
class _TestStrftimeYear:
# Issue 13305: For years < 1000, the value is not always
# padded to 4 digits across platforms. The C standard
# assumes year >= 1900, so it does not specify the number
# of digits.
if time.strftime('%Y', (1,) + (0,) * 8) == '0001':
_format = '%04d'
else:
_format = '%d'
def yearstr(self, y):
return time.strftime('%Y', (y,) + (0,) * 8)
def test_4dyear(self):
# Check that we can return the zero padded value.
if self._format == '%04d':
self.test_year('%04d')
else:
def year4d(y):
return time.strftime('%4Y', (y,) + (0,) * 8)
self.test_year('%04d', func=year4d)
def skip_if_not_supported(y):
msg = "strftime() is limited to [1; 9999] with Visual Studio"
# Check that it doesn't crash for year > 9999
try:
time.strftime('%Y', (y,) + (0,) * 8)
except ValueError:
cond = False
else:
cond = True
return unittest.skipUnless(cond, msg)
@skip_if_not_supported(10000)
def test_large_year(self):
return super().test_large_year()
@skip_if_not_supported(0)
def test_negative(self):
return super().test_negative()
del skip_if_not_supported
class _Test4dYear:
_format = '%d'
def test_year(self, fmt=None, func=None):
fmt = fmt or self._format
func = func or self.yearstr
self.assertEqual(func(1), fmt % 1)
self.assertEqual(func(68), fmt % 68)
self.assertEqual(func(69), fmt % 69)
self.assertEqual(func(99), fmt % 99)
self.assertEqual(func(999), fmt % 999)
self.assertEqual(func(9999), fmt % 9999)
def test_large_year(self):
self.assertEqual(self.yearstr(12345), '12345')
self.assertEqual(self.yearstr(123456789), '123456789')
self.assertEqual(self.yearstr(TIME_MAXYEAR), str(TIME_MAXYEAR))
self.assertRaises(OverflowError, self.yearstr, TIME_MAXYEAR + 1)
def test_negative(self):
self.assertEqual(self.yearstr(-1), self._format % -1)
self.assertEqual(self.yearstr(-1234), '-1234')
self.assertEqual(self.yearstr(-123456), '-123456')
self.assertEqual(self.yearstr(-123456789), str(-123456789))
self.assertEqual(self.yearstr(-1234567890), str(-1234567890))
self.assertEqual(self.yearstr(TIME_MINYEAR + 1900), str(TIME_MINYEAR + 1900))
# Issue #13312: it may return wrong value for year < TIME_MINYEAR + 1900
# Skip the value test, but check that no error is raised
self.yearstr(TIME_MINYEAR)
# self.assertEqual(self.yearstr(TIME_MINYEAR), str(TIME_MINYEAR))
self.assertRaises(OverflowError, self.yearstr, TIME_MINYEAR - 1)
class TestAsctime4dyear(_TestAsctimeYear, _Test4dYear, unittest.TestCase):
pass
class TestStrftime4dyear(_TestStrftimeYear, _Test4dYear, unittest.TestCase):
pass
class TestPytime(unittest.TestCase):
def setUp(self):
self.invalid_values = (
-(2 ** 100), 2 ** 100,
-(2.0 ** 100.0), 2.0 ** 100.0,
)
@support.cpython_only
def test_time_t(self):
from _testcapi import pytime_object_to_time_t
for obj, time_t, rnd in (
# Round towards minus infinity (-inf)
(0, 0, _PyTime.ROUND_FLOOR),
(-1, -1, _PyTime.ROUND_FLOOR),
(-1.0, -1, _PyTime.ROUND_FLOOR),
(-1.9, -2, _PyTime.ROUND_FLOOR),
(1.0, 1, _PyTime.ROUND_FLOOR),
(1.9, 1, _PyTime.ROUND_FLOOR),
# Round towards infinity (+inf)
(0, 0, _PyTime.ROUND_CEILING),
(-1, -1, _PyTime.ROUND_CEILING),
(-1.0, -1, _PyTime.ROUND_CEILING),
(-1.9, -1, _PyTime.ROUND_CEILING),
(1.0, 1, _PyTime.ROUND_CEILING),
(1.9, 2, _PyTime.ROUND_CEILING),
):
self.assertEqual(pytime_object_to_time_t(obj, rnd), time_t)
rnd = _PyTime.ROUND_FLOOR
for invalid in self.invalid_values:
self.assertRaises(OverflowError,
pytime_object_to_time_t, invalid, rnd)
@support.cpython_only
def test_timespec(self):
from _testcapi import pytime_object_to_timespec
for obj, timespec, rnd in (
# Round towards minus infinity (-inf)
(0, (0, 0), _PyTime.ROUND_FLOOR),
(-1, (-1, 0), _PyTime.ROUND_FLOOR),
(-1.0, (-1, 0), _PyTime.ROUND_FLOOR),
(1e-9, (0, 1), _PyTime.ROUND_FLOOR),
(1e-10, (0, 0), _PyTime.ROUND_FLOOR),
(-1e-9, (-1, 999999999), _PyTime.ROUND_FLOOR),
(-1e-10, (-1, 999999999), _PyTime.ROUND_FLOOR),
(-1.2, (-2, 800000000), _PyTime.ROUND_FLOOR),
(0.9999999999, (0, 999999999), _PyTime.ROUND_FLOOR),
(1.1234567890, (1, 123456789), _PyTime.ROUND_FLOOR),
(1.1234567899, (1, 123456789), _PyTime.ROUND_FLOOR),
(-1.1234567890, (-2, 876543211), _PyTime.ROUND_FLOOR),
(-1.1234567891, (-2, 876543210), _PyTime.ROUND_FLOOR),
# Round towards infinity (+inf)
(0, (0, 0), _PyTime.ROUND_CEILING),
(-1, (-1, 0), _PyTime.ROUND_CEILING),
(-1.0, (-1, 0), _PyTime.ROUND_CEILING),
(1e-9, (0, 1), _PyTime.ROUND_CEILING),
(1e-10, (0, 1), _PyTime.ROUND_CEILING),
(-1e-9, (-1, 999999999), _PyTime.ROUND_CEILING),
(-1e-10, (0, 0), _PyTime.ROUND_CEILING),
(-1.2, (-2, 800000000), _PyTime.ROUND_CEILING),
(0.9999999999, (1, 0), _PyTime.ROUND_CEILING),
(1.1234567890, (1, 123456790), _PyTime.ROUND_CEILING),
(1.1234567899, (1, 123456790), _PyTime.ROUND_CEILING),
(-1.1234567890, (-2, 876543211), _PyTime.ROUND_CEILING),
(-1.1234567891, (-2, 876543211), _PyTime.ROUND_CEILING),
):
with self.subTest(obj=obj, round=rnd, timespec=timespec):
self.assertEqual(pytime_object_to_timespec(obj, rnd), timespec)
rnd = _PyTime.ROUND_FLOOR
for invalid in self.invalid_values:
self.assertRaises(OverflowError,
pytime_object_to_timespec, invalid, rnd)
@unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support")
def test_localtime_timezone(self):
# Get the localtime and examine it for the offset and zone.
lt = time.localtime()
self.assertTrue(hasattr(lt, "tm_gmtoff"))
self.assertTrue(hasattr(lt, "tm_zone"))
# See if the offset and zone are similar to the module
# attributes.
if lt.tm_gmtoff is None:
self.assertTrue(not hasattr(time, "timezone"))
else:
self.assertEqual(lt.tm_gmtoff, -[time.timezone, time.altzone][lt.tm_isdst])
if lt.tm_zone is None:
self.assertTrue(not hasattr(time, "tzname"))
else:
self.assertEqual(lt.tm_zone, time.tzname[lt.tm_isdst])
# Try and make UNIX times from the localtime and a 9-tuple
# created from the localtime. Test to see that the times are
# the same.
t = time.mktime(lt); t9 = time.mktime(lt[:9])
self.assertEqual(t, t9)
# Make localtimes from the UNIX times and compare them to
# the original localtime, thus making a round trip.
new_lt = time.localtime(t); new_lt9 = time.localtime(t9)
self.assertEqual(new_lt, lt)
self.assertEqual(new_lt.tm_gmtoff, lt.tm_gmtoff)
self.assertEqual(new_lt.tm_zone, lt.tm_zone)
self.assertEqual(new_lt9, lt)
self.assertEqual(new_lt.tm_gmtoff, lt.tm_gmtoff)
self.assertEqual(new_lt9.tm_zone, lt.tm_zone)
@unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support")
def test_strptime_timezone(self):
t = time.strptime("UTC", "%Z")
self.assertEqual(t.tm_zone, 'UTC')
t = time.strptime("+0500", "%z")
self.assertEqual(t.tm_gmtoff, 5 * 3600)
@unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support")
def test_short_times(self):
import pickle
# Load a short time structure using pickle.
st = b"ctime\nstruct_time\np0\n((I2007\nI8\nI11\nI1\nI24\nI49\nI5\nI223\nI1\ntp1\n(dp2\ntp3\nRp4\n."
lt = pickle.loads(st)
self.assertIs(lt.tm_gmtoff, None)
self.assertIs(lt.tm_zone, None)
@unittest.skipUnless(_testcapi is not None,
'need the _testcapi module')
class TestPyTime_t(unittest.TestCase):
def test_FromSeconds(self):
from _testcapi import PyTime_FromSeconds
for seconds in (0, 3, -456, _testcapi.INT_MAX, _testcapi.INT_MIN):
with self.subTest(seconds=seconds):
self.assertEqual(PyTime_FromSeconds(seconds),
seconds * SEC_TO_NS)
def test_FromSecondsObject(self):
from _testcapi import PyTime_FromSecondsObject
# Conversion giving the same result for all rounding methods
for rnd in ALL_ROUNDING_METHODS:
for obj, ts in (
# integers
(0, 0),
(1, SEC_TO_NS),
(-3, -3 * SEC_TO_NS),
# float: subseconds
(0.0, 0),
(1e-9, 1),
(1e-6, 10 ** 3),
(1e-3, 10 ** 6),
# float: seconds
(2.0, 2 * SEC_TO_NS),
(123.0, 123 * SEC_TO_NS),
(-7.0, -7 * SEC_TO_NS),
# nanosecond are kept for value <= 2^23 seconds
(2**22 - 1e-9, 4194303999999999),
(2**22, 4194304000000000),
(2**22 + 1e-9, 4194304000000001),
(2**23 - 1e-9, 8388607999999999),
(2**23, 8388608000000000),
# start loosing precision for value > 2^23 seconds
(2**23 + 1e-9, 8388608000000002),
# nanoseconds are lost for value > 2^23 seconds
(2**24 - 1e-9, 16777215999999998),
(2**24, 16777216000000000),
(2**24 + 1e-9, 16777216000000000),
(2**25 - 1e-9, 33554432000000000),
(2**25 , 33554432000000000),
(2**25 + 1e-9, 33554432000000000),
# close to 2^63 nanoseconds (_PyTime_t limit)
(9223372036, 9223372036 * SEC_TO_NS),
(9223372036.0, 9223372036 * SEC_TO_NS),
(-9223372036, -9223372036 * SEC_TO_NS),
(-9223372036.0, -9223372036 * SEC_TO_NS),
):
with self.subTest(obj=obj, round=rnd, timestamp=ts):
self.assertEqual(PyTime_FromSecondsObject(obj, rnd), ts)
with self.subTest(round=rnd):
with self.assertRaises(OverflowError):
PyTime_FromSecondsObject(9223372037, rnd)
PyTime_FromSecondsObject(9223372037.0, rnd)
PyTime_FromSecondsObject(-9223372037, rnd)
PyTime_FromSecondsObject(-9223372037.0, rnd)
# Conversion giving different results depending on the rounding method
FLOOR = _PyTime.ROUND_FLOOR
CEILING = _PyTime.ROUND_CEILING
for obj, ts, rnd in (
# close to zero
( 1e-10, 0, FLOOR),
( 1e-10, 1, CEILING),
(-1e-10, -1, FLOOR),
(-1e-10, 0, CEILING),
# test rounding of the last nanosecond
( 1.1234567899, 1123456789, FLOOR),
( 1.1234567899, 1123456790, CEILING),
(-1.1234567899, -1123456790, FLOOR),
(-1.1234567899, -1123456789, CEILING),
# close to 1 second
( 0.9999999999, 999999999, FLOOR),
( 0.9999999999, 1000000000, CEILING),
(-0.9999999999, -1000000000, FLOOR),
(-0.9999999999, -999999999, CEILING),
):
with self.subTest(obj=obj, round=rnd, timestamp=ts):
self.assertEqual(PyTime_FromSecondsObject(obj, rnd), ts)
def test_AsSecondsDouble(self):
from _testcapi import PyTime_AsSecondsDouble
for nanoseconds, seconds in (
# near 1 nanosecond
( 0, 0.0),
( 1, 1e-9),
(-1, -1e-9),
# near 1 second
(SEC_TO_NS + 1, 1.0 + 1e-9),
(SEC_TO_NS, 1.0),
(SEC_TO_NS - 1, 1.0 - 1e-9),
# a few seconds
(123 * SEC_TO_NS, 123.0),
(-567 * SEC_TO_NS, -567.0),
# nanosecond are kept for value <= 2^23 seconds
(4194303999999999, 2**22 - 1e-9),
(4194304000000000, 2**22),
(4194304000000001, 2**22 + 1e-9),
# start loosing precision for value > 2^23 seconds
(8388608000000002, 2**23 + 1e-9),
# nanoseconds are lost for value > 2^23 seconds
(16777215999999998, 2**24 - 1e-9),
(16777215999999999, 2**24 - 1e-9),
(16777216000000000, 2**24 ),
(16777216000000001, 2**24 ),
(16777216000000002, 2**24 + 2e-9),
(33554432000000000, 2**25 ),
(33554432000000002, 2**25 ),
(33554432000000004, 2**25 + 4e-9),
# close to 2^63 nanoseconds (_PyTime_t limit)
(9223372036 * SEC_TO_NS, 9223372036.0),
(-9223372036 * SEC_TO_NS, -9223372036.0),
):
with self.subTest(nanoseconds=nanoseconds, seconds=seconds):
self.assertEqual(PyTime_AsSecondsDouble(nanoseconds),
seconds)
def test_timeval(self):
from _testcapi import PyTime_AsTimeval
for rnd in ALL_ROUNDING_METHODS:
for ns, tv in (
# microseconds
(0, (0, 0)),
(1000, (0, 1)),
(-1000, (-1, 999999)),
# seconds
(2 * SEC_TO_NS, (2, 0)),
(-3 * SEC_TO_NS, (-3, 0)),
):
with self.subTest(nanoseconds=ns, timeval=tv, round=rnd):
self.assertEqual(PyTime_AsTimeval(ns, rnd), tv)
FLOOR = _PyTime.ROUND_FLOOR
CEILING = _PyTime.ROUND_CEILING
for ns, tv, rnd in (
# nanoseconds
(1, (0, 0), FLOOR),
(1, (0, 1), CEILING),
(-1, (-1, 999999), FLOOR),
(-1, (0, 0), CEILING),
# seconds + nanoseconds
(1234567001, (1, 234567), FLOOR),
(1234567001, (1, 234568), CEILING),
(-1234567001, (-2, 765432), FLOOR),
(-1234567001, (-2, 765433), CEILING),
):
with self.subTest(nanoseconds=ns, timeval=tv, round=rnd):
self.assertEqual(PyTime_AsTimeval(ns, rnd), tv)
@unittest.skipUnless(hasattr(_testcapi, 'PyTime_AsTimespec'),
'need _testcapi.PyTime_AsTimespec')
def test_timespec(self):
from _testcapi import PyTime_AsTimespec
for ns, ts in (
# nanoseconds
(0, (0, 0)),
(1, (0, 1)),
(-1, (-1, 999999999)),
# seconds
(2 * SEC_TO_NS, (2, 0)),
(-3 * SEC_TO_NS, (-3, 0)),
# seconds + nanoseconds
(1234567890, (1, 234567890)),
(-1234567890, (-2, 765432110)),
):
with self.subTest(nanoseconds=ns, timespec=ts):
self.assertEqual(PyTime_AsTimespec(ns), ts)
def test_milliseconds(self):
from _testcapi import PyTime_AsMilliseconds
for rnd in ALL_ROUNDING_METHODS:
for ns, tv in (
# milliseconds
(1 * MS_TO_NS, 1),
(-2 * MS_TO_NS, -2),
# seconds
(2 * SEC_TO_NS, 2000),
(-3 * SEC_TO_NS, -3000),
):
with self.subTest(nanoseconds=ns, timeval=tv, round=rnd):
self.assertEqual(PyTime_AsMilliseconds(ns, rnd), tv)
FLOOR = _PyTime.ROUND_FLOOR
CEILING = _PyTime.ROUND_CEILING
for ns, ms, rnd in (
# nanoseconds
(1, 0, FLOOR),
(1, 1, CEILING),
(-1, 0, FLOOR),
(-1, -1, CEILING),
# seconds + nanoseconds
(1234 * MS_TO_NS + 1, 1234, FLOOR),
(1234 * MS_TO_NS + 1, 1235, CEILING),
(-1234 * MS_TO_NS - 1, -1234, FLOOR),
(-1234 * MS_TO_NS - 1, -1235, CEILING),
):
with self.subTest(nanoseconds=ns, milliseconds=ms, round=rnd):
self.assertEqual(PyTime_AsMilliseconds(ns, rnd), ms)
def test_microseconds(self):
from _testcapi import PyTime_AsMicroseconds
for rnd in ALL_ROUNDING_METHODS:
for ns, tv in (
# microseconds
(1 * US_TO_NS, 1),
(-2 * US_TO_NS, -2),
# milliseconds
(1 * MS_TO_NS, 1000),
(-2 * MS_TO_NS, -2000),
# seconds
(2 * SEC_TO_NS, 2000000),
(-3 * SEC_TO_NS, -3000000),
):
with self.subTest(nanoseconds=ns, timeval=tv, round=rnd):
self.assertEqual(PyTime_AsMicroseconds(ns, rnd), tv)
FLOOR = _PyTime.ROUND_FLOOR
CEILING = _PyTime.ROUND_CEILING
for ns, ms, rnd in (
# nanoseconds
(1, 0, FLOOR),
(1, 1, CEILING),
(-1, 0, FLOOR),
(-1, -1, CEILING),
# seconds + nanoseconds
(1234 * US_TO_NS + 1, 1234, FLOOR),
(1234 * US_TO_NS + 1, 1235, CEILING),
(-1234 * US_TO_NS - 1, -1234, FLOOR),
(-1234 * US_TO_NS - 1, -1235, CEILING),
):
with self.subTest(nanoseconds=ns, milliseconds=ms, round=rnd):
self.assertEqual(PyTime_AsMicroseconds(ns, rnd), ms)
if __name__ == "__main__":
unittest.main()