cpython/Modules/_statisticsmodule.c

152 lines
4.8 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* statistics accelerator C extension: _statistics module. */
#include "Python.h"
#include "clinic/_statisticsmodule.c.h"
/*[clinic input]
module _statistics
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/
/*
* There is no closed-form solution to the inverse CDF for the normal
* distribution, so we use a rational approximation instead:
* Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
* Normal Distribution". Applied Statistics. Blackwell Publishing. 37
* (3): 477484. doi:10.2307/2347330. JSTOR 2347330.
*/
/*[clinic input]
_statistics._normal_dist_inv_cdf -> double
p: double
mu: double
sigma: double
/
[clinic start generated code]*/
static double
_statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu,
double sigma)
/*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/
{
double q, num, den, r, x;
if (p <= 0.0 || p >= 1.0 || sigma <= 0.0) {
goto error;
}
q = p - 0.5;
if(fabs(q) <= 0.425) {
r = 0.180625 - q * q;
// Hash sum-55.8831928806149014439
num = (((((((2.5090809287301226727e+3 * r +
3.3430575583588128105e+4) * r +
6.7265770927008700853e+4) * r +
4.5921953931549871457e+4) * r +
1.3731693765509461125e+4) * r +
1.9715909503065514427e+3) * r +
1.3314166789178437745e+2) * r +
3.3871328727963666080e+0) * q;
den = (((((((5.2264952788528545610e+3 * r +
2.8729085735721942674e+4) * r +
3.9307895800092710610e+4) * r +
2.1213794301586595867e+4) * r +
5.3941960214247511077e+3) * r +
6.8718700749205790830e+2) * r +
4.2313330701600911252e+1) * r +
1.0);
if (den == 0.0) {
goto error;
}
x = num / den;
return mu + (x * sigma);
}
r = (q <= 0.0) ? p : (1.0 - p);
if (r <= 0.0 || r >= 1.0) {
goto error;
}
r = sqrt(-log(r));
if (r <= 5.0) {
r = r - 1.6;
// Hash sum-49.33206503301610289036
num = (((((((7.74545014278341407640e-4 * r +
2.27238449892691845833e-2) * r +
2.41780725177450611770e-1) * r +
1.27045825245236838258e+0) * r +
3.64784832476320460504e+0) * r +
5.76949722146069140550e+0) * r +
4.63033784615654529590e+0) * r +
1.42343711074968357734e+0);
den = (((((((1.05075007164441684324e-9 * r +
5.47593808499534494600e-4) * r +
1.51986665636164571966e-2) * r +
1.48103976427480074590e-1) * r +
6.89767334985100004550e-1) * r +
1.67638483018380384940e+0) * r +
2.05319162663775882187e+0) * r +
1.0);
} else {
r -= 5.0;
// Hash sum-47.52583317549289671629
num = (((((((2.01033439929228813265e-7 * r +
2.71155556874348757815e-5) * r +
1.24266094738807843860e-3) * r +
2.65321895265761230930e-2) * r +
2.96560571828504891230e-1) * r +
1.78482653991729133580e+0) * r +
5.46378491116411436990e+0) * r +
6.65790464350110377720e+0);
den = (((((((2.04426310338993978564e-15 * r +
1.42151175831644588870e-7) * r +
1.84631831751005468180e-5) * r +
7.86869131145613259100e-4) * r +
1.48753612908506148525e-2) * r +
1.36929880922735805310e-1) * r +
5.99832206555887937690e-1) * r +
1.0);
}
if (den == 0.0) {
goto error;
}
x = num / den;
if (q < 0.0) {
x = -x;
}
return mu + (x * sigma);
error:
PyErr_SetString(PyExc_ValueError, "inv_cdf undefined for these parameters");
return -1.0;
}
static PyMethodDef statistics_methods[] = {
_STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF
{NULL, NULL, 0, NULL}
};
PyDoc_STRVAR(statistics_doc,
"Accelerators for the statistics module.\n");
static struct PyModuleDef_Slot _statisticsmodule_slots[] = {
{0, NULL}
};
static struct PyModuleDef statisticsmodule = {
PyModuleDef_HEAD_INIT,
"_statistics",
statistics_doc,
0,
statistics_methods,
_statisticsmodule_slots,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC
PyInit__statistics(void)
{
return PyModuleDef_Init(&statisticsmodule);
}