#include "Python.h" #ifdef MS_WINDOWS # include /* All sample MSDN wincrypt programs include the header below. It is at least * required with Min GW. */ # include #else # include # ifdef HAVE_SYS_STAT_H # include # endif # ifdef HAVE_LINUX_RANDOM_H # include # endif # ifdef HAVE_GETRANDOM # include # elif defined(HAVE_GETRANDOM_SYSCALL) # include # endif #endif #ifdef Py_DEBUG int _Py_HashSecret_Initialized = 0; #else static int _Py_HashSecret_Initialized = 0; #endif #ifdef MS_WINDOWS static HCRYPTPROV hCryptProv = 0; static int win32_urandom_init(int raise) { /* Acquire context */ if (!CryptAcquireContext(&hCryptProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) goto error; return 0; error: if (raise) { PyErr_SetFromWindowsErr(0); } return -1; } /* Fill buffer with size pseudo-random bytes generated by the Windows CryptoGen API. Return 0 on success, or raise an exception and return -1 on error. */ static int win32_urandom(unsigned char *buffer, Py_ssize_t size, int raise) { Py_ssize_t chunk; if (hCryptProv == 0) { if (win32_urandom_init(raise) == -1) { return -1; } } while (size > 0) { chunk = size > INT_MAX ? INT_MAX : size; if (!CryptGenRandom(hCryptProv, (DWORD)chunk, buffer)) { /* CryptGenRandom() failed */ if (raise) { PyErr_SetFromWindowsErr(0); } return -1; } buffer += chunk; size -= chunk; } return 0; } /* Issue #25003: Don't use getentropy() on Solaris (available since Solaris 11.3), it is blocking whereas os.urandom() should not block. */ #elif defined(HAVE_GETENTROPY) && !defined(sun) #define PY_GETENTROPY 1 /* Fill buffer with size pseudo-random bytes generated by getentropy(). Return 0 on success, or raise an exception and return -1 on error. If raise is zero, don't raise an exception on error. */ static int py_getentropy(char *buffer, Py_ssize_t size, int raise) { while (size > 0) { Py_ssize_t len = Py_MIN(size, 256); int res; if (raise) { Py_BEGIN_ALLOW_THREADS res = getentropy(buffer, len); Py_END_ALLOW_THREADS } else { res = getentropy(buffer, len); } if (res < 0) { if (raise) { PyErr_SetFromErrno(PyExc_OSError); } return -1; } buffer += len; size -= len; } return 0; } #else #if defined(HAVE_GETRANDOM) || defined(HAVE_GETRANDOM_SYSCALL) #define PY_GETRANDOM 1 /* Call getrandom() - Return 1 on success - Return 0 if getrandom() syscall is not available (fails with ENOSYS). - Raise an exception (if raise is non-zero) and return -1 on error: getrandom() failed with EINTR and the Python signal handler raised an exception, or getrandom() failed with a different error. */ static int py_getrandom(void *buffer, Py_ssize_t size, int raise) { /* Is getrandom() supported by the running kernel? Need Linux kernel 3.17 or newer, or Solaris 11.3 or newer */ static int getrandom_works = 1; /* getrandom() on Linux will block if called before the kernel has initialized the urandom entropy pool. This will cause Python to hang on startup if called very early in the boot process - see https://bugs.python.org/issue26839. To avoid this, use the GRND_NONBLOCK flag. */ const int flags = GRND_NONBLOCK; char *dest; long n; if (!getrandom_works) { return 0; } dest = buffer; while (0 < size) { #ifdef sun /* Issue #26735: On Solaris, getrandom() is limited to returning up to 1024 bytes */ n = Py_MIN(size, 1024); #else n = Py_MIN(size, LONG_MAX); #endif errno = 0; #ifdef HAVE_GETRANDOM if (raise) { Py_BEGIN_ALLOW_THREADS n = getrandom(dest, n, flags); Py_END_ALLOW_THREADS } else { n = getrandom(dest, n, flags); } #else /* On Linux, use the syscall() function because the GNU libc doesn't expose the Linux getrandom() syscall yet. See: https://sourceware.org/bugzilla/show_bug.cgi?id=17252 */ if (raise) { Py_BEGIN_ALLOW_THREADS n = syscall(SYS_getrandom, dest, n, flags); Py_END_ALLOW_THREADS } else { n = syscall(SYS_getrandom, dest, n, flags); } #endif if (n < 0) { if (errno == ENOSYS) { getrandom_works = 0; return 0; } if (errno == EAGAIN) { /* If we failed with EAGAIN, the entropy pool was uninitialized. In this case, we return failure to fall back to reading from /dev/urandom. Note: In this case the data read will not be random so should not be used for cryptographic purposes. Retaining the existing semantics for practical purposes. */ getrandom_works = 0; return 0; } if (errno == EINTR) { if (raise) { if (PyErr_CheckSignals()) { return -1; } } /* retry getrandom() if it was interrupted by a signal */ continue; } if (raise) { PyErr_SetFromErrno(PyExc_OSError); } return -1; } dest += n; size -= n; } return 1; } #endif static struct { int fd; dev_t st_dev; ino_t st_ino; } urandom_cache = { -1 }; /* Read 'size' random bytes from getrandom(). Fall back on reading from /dev/urandom if getrandom() is not available. Return 0 on success. Raise an exception (if raise is non-zero) and return -1 on error. */ static int dev_urandom(char *buffer, Py_ssize_t size, int raise) { int fd; Py_ssize_t n; #ifdef PY_GETRANDOM int res; #endif assert(size > 0); #ifdef PY_GETRANDOM res = py_getrandom(buffer, size, raise); if (res < 0) { return -1; } if (res == 1) { return 0; } /* getrandom() is not supported by the running kernel, fall back on reading /dev/urandom */ #endif if (raise) { struct _Py_stat_struct st; if (urandom_cache.fd >= 0) { /* Does the fd point to the same thing as before? (issue #21207) */ if (_Py_fstat_noraise(urandom_cache.fd, &st) || st.st_dev != urandom_cache.st_dev || st.st_ino != urandom_cache.st_ino) { /* Something changed: forget the cached fd (but don't close it, since it probably points to something important for some third-party code). */ urandom_cache.fd = -1; } } if (urandom_cache.fd >= 0) fd = urandom_cache.fd; else { fd = _Py_open("/dev/urandom", O_RDONLY); if (fd < 0) { if (errno == ENOENT || errno == ENXIO || errno == ENODEV || errno == EACCES) PyErr_SetString(PyExc_NotImplementedError, "/dev/urandom (or equivalent) not found"); /* otherwise, keep the OSError exception raised by _Py_open() */ return -1; } if (urandom_cache.fd >= 0) { /* urandom_fd was initialized by another thread while we were not holding the GIL, keep it. */ close(fd); fd = urandom_cache.fd; } else { if (_Py_fstat(fd, &st)) { close(fd); return -1; } else { urandom_cache.fd = fd; urandom_cache.st_dev = st.st_dev; urandom_cache.st_ino = st.st_ino; } } } do { n = _Py_read(fd, buffer, (size_t)size); if (n == -1) return -1; if (n == 0) { PyErr_Format(PyExc_RuntimeError, "Failed to read %zi bytes from /dev/urandom", size); return -1; } buffer += n; size -= n; } while (0 < size); } else { fd = _Py_open_noraise("/dev/urandom", O_RDONLY); if (fd < 0) { return -1; } while (0 < size) { do { n = read(fd, buffer, (size_t)size); } while (n < 0 && errno == EINTR); if (n <= 0) { /* stop on error or if read(size) returned 0 */ close(fd); return -1; } buffer += n; size -= n; } close(fd); } return 0; } static void dev_urandom_close(void) { if (urandom_cache.fd >= 0) { close(urandom_cache.fd); urandom_cache.fd = -1; } } #endif /* Fill buffer with pseudo-random bytes generated by a linear congruent generator (LCG): x(n+1) = (x(n) * 214013 + 2531011) % 2^32 Use bits 23..16 of x(n) to generate a byte. */ static void lcg_urandom(unsigned int x0, unsigned char *buffer, size_t size) { size_t index; unsigned int x; x = x0; for (index=0; index < size; index++) { x *= 214013; x += 2531011; /* modulo 2 ^ (8 * sizeof(int)) */ buffer[index] = (x >> 16) & 0xff; } } /* If raise is zero: - Don't raise exceptions on error - Don't call PyErr_CheckSignals() on EINTR (retry directly the interrupted syscall) - Don't release the GIL to call syscalls. */ static int pyurandom(void *buffer, Py_ssize_t size, int raise) { if (size < 0) { if (raise) { PyErr_Format(PyExc_ValueError, "negative argument not allowed"); } return -1; } if (size == 0) { return 0; } #ifdef MS_WINDOWS return win32_urandom((unsigned char *)buffer, size, raise); #elif defined(PY_GETENTROPY) return py_getentropy(buffer, size, raise); #else return dev_urandom(buffer, size, raise); #endif } /* Fill buffer with size pseudo-random bytes from the operating system random number generator (RNG). It is suitable for most cryptographic purposes except long living private keys for asymmetric encryption. Return 0 on success, raise an exception and return -1 on error. */ int _PyOS_URandom(void *buffer, Py_ssize_t size) { return pyurandom(buffer, size, 1); } void _PyRandom_Init(void) { char *env; unsigned char *secret = (unsigned char *)&_Py_HashSecret.uc; Py_ssize_t secret_size = sizeof(_Py_HashSecret_t); Py_BUILD_ASSERT(sizeof(_Py_HashSecret_t) == sizeof(_Py_HashSecret.uc)); if (_Py_HashSecret_Initialized) return; _Py_HashSecret_Initialized = 1; /* Hash randomization is enabled. Generate a per-process secret, using PYTHONHASHSEED if provided. */ env = Py_GETENV("PYTHONHASHSEED"); if (env && *env != '\0' && strcmp(env, "random") != 0) { char *endptr = env; unsigned long seed; seed = strtoul(env, &endptr, 10); if (*endptr != '\0' || seed > 4294967295UL || (errno == ERANGE && seed == ULONG_MAX)) { Py_FatalError("PYTHONHASHSEED must be \"random\" or an integer " "in range [0; 4294967295]"); } if (seed == 0) { /* disable the randomized hash */ memset(secret, 0, secret_size); } else { lcg_urandom(seed, secret, secret_size); } } else { int res; /* _PyRandom_Init() is called very early in the Python initialization and so exceptions cannot be used (use raise=0). */ res = pyurandom(secret, secret_size, 0); if (res < 0) { Py_FatalError("failed to get random numbers to initialize Python"); } } } void _PyRandom_Fini(void) { #ifdef MS_WINDOWS if (hCryptProv) { CryptReleaseContext(hCryptProv, 0); hCryptProv = 0; } #elif defined(PY_GETENTROPY) /* nothing to clean */ #else dev_urandom_close(); #endif }