i_divmod: New and simpler algorithm. Old one returned gibberish on most
boxes when the numerator was -sys.maxint-1. Oddly enough, it worked in the
release (not debug) build on Windows, because the compiler optimized away
some tricky sign manipulations that were incorrect in this case.
Makes you wonder <wink> ...
Bugfix candidate.
Unfortunately, the std-mode bBhHIL codes don't do any range-checking; if
and when some of those get fixed, remove their letters from the
IntTester.BUGGY_RANGE_CHECK string. In the meantime, a msg saying that
range-tests are getting skipped is printed to stdout whenever one is
skipped.
This completes the q/Q project.
longobject.c _PyLong_AsByteArray: The original code had a gross bug:
the most-significant Python digit doesn't necessarily have SHIFT
significant bits, and you really need to count how many copies of the sign
bit it has else spurious overflow errors result.
test_struct.py: This now does exhaustive std q/Q testing at, and on both
sides of, all relevant power-of-2 boundaries, both positive and negative.
NEWS: Added brief dict news while I was at it.
native mode, and only when config #defines HAVE_LONG_LONG. Standard mode
will eventually treat them as 8-byte ints across all platforms, but that
likely requires a new set of routines in longobject.c first (while
sizeof(long) >= 4 is guaranteed by C, there's nothing in C we can rely
on x-platform to hold 8 bytes of int, so we'll have to roll our own;
I'm thinking of a simple pair of conversion functions, Python long
to/from sized vector of unsigned bytes; that may be useful for GMP
conversions too; std q/Q would call them with size fixed at 8).
test_struct.py: In addition to adding some native-mode 'q' and 'Q' tests,
got rid of unused code, and repaired a non-portable assumption about
native sizeof(short) (it isn't 2 on some Cray boxes).
libstruct.tex: In addition to adding a bit of 'q'/'Q' docs (more needed
later), removed an erroneous footnote about 'I' behavior.
be possible to provoke unbounded recursion now, but leaving that to someone
else to provoke and repair.
Bugfix candidate -- although this is getting harder to backstitch, and the
cases it's protecting against are mondo contrived.
random inputs: if you ran the test 100 times, you could expect it to
report a bogus failure. So loosened its expectations.
Also changed the way failing tests are printed, so that when run under
regrtest.py we get enough info to reproduce the failure.
exactly once. But the test code can't know that, as the number of times
__cmp__ is called depends on internal details of the dict implementation.
This is especially nasty because the __hash__ method returns the address
of the class object, so the hash codes seen by the dict can vary across
runs, causing the dict to use a different probe order across runs. I
just happened to see this test fail about 1 run in 7 today, but only
under a release build and when passing -O to Python. So, changed the test
to be predictable across runs.
name of the test, only write the output file if it already exists (and
tell the user to consider removing it). This avoids the generation of
unnecessary turds.
dictresize() was too aggressive about never ever resizing small dicts.
If a small dict is entirely full, it needs to rebuild it despite that
it won't actually resize it, in order to purge old dummy entries thus
creating at least one virgin slot (lookdict assumes at least one such
exists).
Also took the opportunity to add some high-level comments to dictresize.
When regrtest.py finds an attribute "test_main" in a test it imports,
regrtest runs the test's test_main after the import. test_threaded_import
needs this else the cross-thread import lock prevents it from making
progress. Other tests can use this hack too, but I doubt it will ever be
popular.
ICK ALERT: read the long comment block before run_the_test(). It was
almost impossible to get this to run without instant deadlock, and the
solution here sucks on several counts. If you can dream up a better way,
let me know!
and introduces a new method .decode().
The major change is that strg.encode() will no longer try to convert
Unicode returns from the codec into a string, but instead pass along
the Unicode object as-is. The same is now true for all other codec
return types. The underlying C APIs were changed accordingly.
Note that even though this does have the potential of breaking
existing code, the chances are low since conversion from Unicode
previously took place using the default encoding which is normally
set to ASCII rendering this auto-conversion mechanism useless for
most Unicode encodings.
The good news is that you can now use .encode() and .decode() with
much greater ease and that the door was opened for better accessibility
of the builtin codecs.
As demonstration of the new feature, the patch includes a few new
codecs which allow string to string encoding and decoding (rot13,
hex, zip, uu, base64).
Written by Marc-Andre Lemburg. Copyright assigned to the PSF.