time.time(), time.perf_counter() and time.monotonic() functions can
no longer fail with a Python fatal error, instead raise a regular
Python exception on failure.
Remove _PyTime_Init(): don't check system, monotonic and perf counter
clocks at startup anymore.
On error, _PyTime_GetSystemClock(), _PyTime_GetMonotonicClock() and
_PyTime_GetPerfCounter() now silently ignore the error and return 0.
They cannot fail with a Python fatal error anymore.
Add py_mach_timebase_info() and win_perf_counter_frequency()
sub-functions.
time.perf_counter() on Windows and time.monotonic() on macOS are now
system-wide. Previously, they used an offset computed at startup to
reduce the precision loss caused by the float type. Use
time.perf_counter_ns() and time.monotonic_ns() added in Python 3.7 to
avoid this precision loss.
Co-authored-by: Lawrence D’Anna <lawrence_danna@apple.com>
* Add support for macOS 11 and Apple Silicon (aka arm64)
As a side effect of this work use the system copy of libffi on macOS, and remove the vendored copy
* Support building on recent versions of macOS while deploying to older versions
This allows building installers on macOS 11 while still supporting macOS 10.9.
Fix time.mktime() error handling on AIX for year before 1970.
Other changes:
* mktime(): rename variable 'buf' to 'tm'.
* _PyTime_localtime():
* Use "localtime" rather than "ctime" in the error message
(specific to AIX).
* Always initialize errno to 0 just in case if localtime_r()
doesn't set errno on error.
* On AIX, avoid abs() which is limited to int type.
* EINVAL constant is now always available.
* Fix test_mktime on AIX by adding code to get mktime to behave the
same way as it does on other *nix systems
* Fix test_pthread_getcpuclickid in AIX by adjusting the test case
expectations when running on AIX in 32-bit mode
Patch by Michael Felt.
Add new time functions:
* time.clock_gettime_ns()
* time.clock_settime_ns()
* time.monotonic_ns()
* time.perf_counter_ns()
* time.process_time_ns()
* time.time_ns()
Add new _PyTime functions:
* _PyTime_FromTimespec()
* _PyTime_FromNanosecondsObject()
* _PyTime_FromTimeval()
Other changes:
* Add also os.times() tests to test_os.
* pytime_fromtimeval() and pytime_fromtimeval() now return
_PyTime_MAX or _PyTime_MIN on overflow, rather than undefined
behaviour
* _PyTime_FromNanoseconds() parameter type changes from long long to
_PyTime_t
* Rewrite win_perf_counter() to only use integers internally.
* Add _PyTime_MulDiv() which compute "ticks * mul / div"
in two parts (int part and remaining) to prevent integer overflow.
* Clock frequency is checked at initialization for integer overflow.
* Enhance also pymonotonic() to reduce the precision loss on macOS
(mach_absolute_time() clock).
time.clock() and time.perf_counter() now use again C double
internally.
Remove also _PyTime_GetWinPerfCounterWithInfo(): use
_PyTime_GetPerfCounterDoubleWithInfo() instead on Windows.
* Add Py_UNREACHABLE() as an alias to abort().
* Use Py_UNREACHABLE() instead of assert(0)
* Convert more unreachable code to use Py_UNREACHABLE()
* Document Py_UNREACHABLE() and a few other macros.
* bpo-30183: Fixes HP-UX cc compilation error in pytime.c
HP-UX does not support the CLOCK_MONOTONIC identifier, and will fail to
compile:
"Python/pytime.c", line 723: error #2020: identifier
"CLOCK_MONOTONIC" is undefined
const clockid_t clk_id = CLOCK_MONOTONIC;
Add a new section for __hpux that calls 'gethrtime()' instead of
'clock_gettime()'.
* bpo-30183: Removes unnecessary return
On the x86 OpenBSD 5.8 buildbot, the integer overflow check is ignored. Copy
the tv_sec variable into a Py_time_t variable instead of "simply" casting it to
Py_time_t, to fix the integer overflow check.
On Windows, the tv_sec field of the timeval structure has the type C long,
whereas it has the type C time_t on all other platforms. A C long has a size of
32 bits (signed inter, 1 bit for the sign, 31 bits for the value) which is not
enough to store an Epoch timestamp after the year 2038.
Add the _PyTime_AsTimevalTime_t() function written for datetime.datetime.now():
convert a _PyTime_t timestamp to a (secs, us) tuple where secs type is time_t.
It allows to support dates after the year 2038 on Windows.
Enhance also _PyTime_AsTimeval_impl() to detect overflow on the number of
seconds when rounding the number of microseconds.
On Windows, the tv_sec field of the timeval structure has the type C long,
whereas it has the type C time_t on all other platforms. A C long has a size of
32 bits (signed inter, 1 bit for the sign, 31 bits for the value) which is not
enough to store an Epoch timestamp after the year 2038.
Add the _PyTime_AsTimevalTime_t() function written for datetime.datetime.now():
convert a _PyTime_t timestamp to a (secs, us) tuple where secs type is time_t.
It allows to support dates after the year 2038 on Windows.
Enhance also _PyTime_AsTimeval_impl() to detect overflow on the number of
seconds when rounding the number of microseconds.
Overflow test in test_FromSecondsObject() fails on FreeBSD 10.0 buildbot which
uses clang. clang implements more aggressive optimization which gives
different result than GCC on undefined behaviours.
Check if a multiplication will overflow, instead of checking if a
multiplicatin had overflowed, to avoid undefined behaviour.
Add also debug information if the test on overflow fails.
* Filter values which would overflow on conversion to the C long type
(for timeval.tv_sec).
* Adjust also the message of OverflowError on PyTime conversions
* test_time: add debug information if a timestamp conversion fails
Drop all hardcoded tests. Instead, reimplement each function in Python, usually
using decimal.Decimal for the rounding mode.
Add much more values to the dataset. Test various timestamp units from
picroseconds to seconds, in integer and float.
Enhance also _PyTime_AsSecondsDouble().
datetime.datetime now round microseconds to nearest with ties going to nearest
even integer (ROUND_HALF_EVEN), as round(float), instead of rounding towards
-Infinity (ROUND_FLOOR).
pytime API: replace _PyTime_ROUND_HALF_UP with _PyTime_ROUND_HALF_EVEN. Fix
also _PyTime_Divide() for negative numbers.
_PyTime_AsTimeval_impl() now reuses _PyTime_Divide() instead of reimplementing
rounding modes.
Don't check anymore at runtime that the monotonic clock doesn't go backward.
Yes, it happens. It occurs sometimes each month on a Debian buildbot slave
running in a VM.
The problem is that Python cannot do anything useful if a monotonic clock goes
backward. It was decided in the PEP 418 to not fix the system, but only expose
the clock provided by the OS.
with ties going away from zero (ROUND_HALF_UP), as Python 2 and Python older
than 3.3, instead of rounding to nearest with ties going to nearest even
integer (ROUND_HALF_EVEN).