After the patch (45590) to add extra debug stats to the gc module, Python
was crashing on OpenBSD due to:
Fatal Python error: Interpreter not initialized (version mismatch?)
This seems to occur due to calling collect() when initialized (in pythonrun.c)
is set to 0. Now, the import will occur in the init function which
shouldn't suffer this problem.
that are suspended outside of any try/except/finally blocks to be
garbage collected even if they are part of a cycle. Generators that
suspend inside of an active try/except or try/finally block (including
those created by a ``with`` statement) are still not GC-able if they
are part of a cycle, however.
nothing in gc currently cares, the original coding could screw up if,
e.g., you tried to move a node to the list it's already in, and the node
was already the last in its list.
Introduced gc_list_move(), which captures the common gc_list_remove() +
gc_list_append() sequence. In fact, no uses of gc_list_append() remained
(they were all in a gc_list_move() sequence), so commented that one out.
gc_list_merge(): assert that `from` != `to`; that was an implicit
precondition, now verified in a debug build.
Others: added comments about their purpose.
In cyclic gc, clear weakrefs to unreachable objects before allowing any
Python code (weakref callbacks or __del__ methods) to run.
This is a critical bugfix, affecting all versions of Python since weakrefs
were introduced. I'll backport to 2.3.
Also SF patch 843455.
This is a critical bugfix.
I'll backport to 2.3 maint, but not beyond that. The bugs this fixes
have been there since weakrefs were introduced.
for this function has always claimed that was true, but it wasn't
verified before. For the latest batch of "double deallocation" bugs
(stemming from weakref callbacks invoked by way of subtype_dealloc),
this assert would have triggered (instead of waiting for
_Py_ForgetReference to die with a segfault later).
The embed2.diff patch solves the user's problem by exporting the missing
symbols from the Python core so Python can be embedded in another Cygwin
application (well, at lest vim).
of PyObject_HasAttr(); the former promises never to execute
arbitrary Python code. Undid many of the changes recently made to
worm around the worst consequences of that PyObject_HasAttr() could
execute arbitrary Python code.
Compatibility is hard to discuss, because the dangerous cases are
so perverse, and much of this appears to rely on implementation
accidents.
To start with, using hasattr() to check for __del__ wasn't only
dangerous, in some cases it was wrong: if an instance of an old-
style class didn't have "__del__" in its instance dict or in any
base class dict, but a getattr hook said __del__ existed, then
hasattr() said "yes, this object has a __del__". But
instance_dealloc() ignores the possibility of getattr hooks when
looking for a __del__, so while object.__del__ succeeds, no
__del__ method is called when the object is deleted. gc was
therefore incorrect in believing that the object had a finalizer.
The new method doesn't suffer that problem (like instance_dealloc(),
_PyObject_Lookup() doesn't believe __del__ exists in that case), but
does suffer a somewhat opposite-- and even more obscure --oddity:
if an instance of an old-style class doesn't have "__del__" in its
instance dict, and a base class does have "__del__" in its dict,
and the first base class with a "__del__" associates it with a
descriptor (an object with a __get__ method), *and* if that
descriptor raises an exception when __get__ is called, then
(a) the current method believes the instance does have a __del__,
but (b) hasattr() does not believe the instance has a __del__.
While these disagree, I believe the new method is "more correct":
because the descriptor *will* be called when the object is
destructed, it can execute arbitrary Python code at the time the
object is destructed, and that's really what gc means by "has a
finalizer": not specifically a __del__ method, but more generally
the possibility of executing arbitrary Python code at object
destruction time. Code in a descriptor's __get__() executed at
destruction time can be just as problematic as code in a
__del__() executed then.
So I believe the new method is better on all counts.
Bugfix candidate, but it's unclear to me how all this differs in
the 2.2 branch (e.g., new-style and old-style classes already
took different gc paths in 2.3 before this last round of patches,
but don't in the 2.2 branch).
instead of looping. Smaller and clearer. Faster, too, when we're not
appending to gc.garbage: gc_list_merge() takes constant time, regardless
of the lists' sizes.
append_objects(): Moved up to live with the other list manipulation
utilities.
externally unreachable objects with finalizers, and externally unreachable
objects without finalizers reachable from such objects. This allows us
to call has_finalizer() at most once per object, and so limit the pain of
nasty getattr hooks. This fixes the failing "boom 2" example Jeremy
posted (a non-printing variant of which is now part of test_gc), via never
triggering the nasty part of its __getattr__ method.
to special-case classic classes, or to worry about refcounts;
has_finalizer() deleted the current object iff the first entry in
the unreachable list has changed. I don't believe it was correct
to check for ob_refcnt == 1, either: the dealloc routine would get
called by Py_DECREF then, but there's nothing to stop the dealloc
routine from ressurecting the object, and then gc would remain at
the head of the unreachable list despite that its refcount temporarily
fell to 0 (and that would lead to an infinite loop in move_finalizers()).
I'm still worried about has_finalizer() resurrecting other objects
in the unreachable list: what's to stop them from getting collected?
delstr from initgc() into collect(). initgc() isn't called unless the
user explicitly imports gc, so can be used only for initialization of
user-visible module features; delstr needs to be initialized for proper
internal operation, whether or not gc is explicitly imported.
Bugfix candidate? I don't know whether the new bug was backported to
2.2 already.
mechanism is no longer evil: it no longer plays dangerous games with
the type pointer or refcounts, and objects in extension modules can play
along too without needing to edit the core first.
Rewrote all the comments to explain this, and (I hope) give clear
guidance to extension authors who do want to play along. Documented
all the functions. Added more asserts (it may no longer be evil, but
it's still dangerous <0.9 wink>). Rearranged the generated code to
make it clearer, and to tolerate either the presence or absence of a
semicolon after the macros. Rewrote _PyTrash_destroy_chain() to call
tp_dealloc directly; it was doing a Py_DECREF again, and that has all
sorts of obscure distorting effects in non-release builds (Py_DECREF
was already called on the object!). Removed Christian's little "embedded
change log" comments -- that's what checkin messages are for, and since
it was impossible to correlate the comments with the code that changed,
I found them merely distracting.
This was mostly a matter of adding comments and light code rearrangement.
Upon untracking, gc_next is still set to NULL. It's a cheap way to
provoke memory faults if calling code is insane. It's also used in some
way by the trashcan mechanism.