See PEP 539 for details.
Highlights of changes:
- Add Thread Specific Storage (TSS) API
- Document the Thread Local Storage (TLS) API as deprecated
- Update code that used TLS API to use TSS API
The current test_child_terminated_in_stopped_state() function test
creates a child process which calls ptrace(PTRACE_TRACEME, 0, 0) and
then crash (SIGSEGV). The problem is that calling os.waitpid() in the
parent process is not enough to close the process: the child process
remains alive and so the unit test leaks a child process in a
strange state. Closing the child process requires non-trivial code,
maybe platform specific.
Remove the functional test and replaces it with an unit test which
mocks os.waitpid() using a new _testcapi.W_STOPCODE() function to
test the WIFSTOPPED() path.
* Make PyTraceMalloc_Track() and PyTraceMalloc_Untrack() functions
public (remove the "_" prefix)
* Remove the _PyTraceMalloc_domain_t type: use directly unsigned
int.
* Document methods
Note: methods are already tested in test_tracemalloc.
If we have a chain of generators/coroutines that are 'yield from'ing
each other, then resuming the stack works like:
- call send() on the outermost generator
- this enters _PyEval_EvalFrameDefault, which re-executes the
YIELD_FROM opcode
- which calls send() on the next generator
- which enters _PyEval_EvalFrameDefault, which re-executes the
YIELD_FROM opcode
- ...etc.
However, every time we enter _PyEval_EvalFrameDefault, the first thing
we do is to check for pending signals, and if there are any then we
run the signal handler. And if it raises an exception, then we
immediately propagate that exception *instead* of starting to execute
bytecode. This means that e.g. a SIGINT at the wrong moment can "break
the chain" – it can be raised in the middle of our yield from chain,
with the bottom part of the stack abandoned for the garbage collector.
The fix is pretty simple: there's already a special case in
_PyEval_EvalFrameEx where it skips running signal handlers if the next
opcode is SETUP_FINALLY. (I don't see how this accomplishes anything
useful, but that's another story.) If we extend this check to also
skip running signal handlers when the next opcode is YIELD_FROM, then
that closes the hole – now the exception can only be raised at the
innermost stack frame.
This shouldn't have any performance implications, because the opcode
check happens inside the "slow path" after we've already determined
that there's a pending signal or something similar for us to process;
the vast majority of the time this isn't true and the new check
doesn't run at all.
Issue #26058: Add a new private version to the builtin dict type, incremented
at each dictionary creation and at each dictionary change.
Implementation of the PEP 509.
Issue #26530:
* Add C functions _PyTraceMalloc_Track() and _PyTraceMalloc_Untrack() to track
memory blocks using the tracemalloc module.
* Add _PyTraceMalloc_GetTraceback() to get the traceback of an object.
Issue #26563: Debug hooks on Python memory allocators now raise a fatal error
if functions of the PyMem_Malloc() family are called without holding the GIL.
Issue #26516:
* Add PYTHONMALLOC environment variable to set the Python memory
allocators and/or install debug hooks.
* PyMem_SetupDebugHooks() can now also be used on Python compiled in release
mode.
* The PYTHONMALLOCSTATS environment variable can now also be used on Python
compiled in release mode. It now has no effect if set to an empty string.
* In debug mode, debug hooks are now also installed on Python memory allocators
when Python is configured without pymalloc.
Issue #25274: sys.setrecursionlimit() now raises a RecursionError if the new
recursion limit is too low depending at the current recursion depth. Modify
also the "lower-water mark" formula to make it monotonic. This mark is used to
decide when the overflowed flag of the thread state is reset.
datetime.datetime now round microseconds to nearest with ties going to nearest
even integer (ROUND_HALF_EVEN), as round(float), instead of rounding towards
-Infinity (ROUND_FLOOR).
pytime API: replace _PyTime_ROUND_HALF_UP with _PyTime_ROUND_HALF_EVEN. Fix
also _PyTime_Divide() for negative numbers.
_PyTime_AsTimeval_impl() now reuses _PyTime_Divide() instead of reimplementing
rounding modes.
Known limitations of the current implementation:
- documentation changes are incomplete
- there's a reference leak I haven't tracked down yet
The leak is most visible by running:
./python -m test -R3:3 test_importlib
However, you can also see it by running:
./python -X showrefcount
Importing the array or _testmultiphase modules, and
then deleting them from both sys.modules and the local
namespace shows significant increases in the total
number of active references each cycle. By contrast,
with _testcapi (which continues to use single-phase
initialisation) the global refcounts stabilise after
a couple of cycles.
* _PyTime_AsTimeval() now ensures that tv_usec is always positive
* _PyTime_AsTimespec() now ensures that tv_nsec is always positive
* _PyTime_AsTimeval() now returns an integer on overflow instead of raising an
exception
* Rename _PyTime_FromObject() to _PyTime_FromSecondsObject()
* Add _PyTime_AsNanosecondsObject() and _testcapi.pytime_fromsecondsobject()
* Add unit tests
which returned an invalid result (result+error or no result without error) in
the exception message.
Add also unit test to check that the exception contains the name of the
function.
Special case: the final _PyEval_EvalFrameEx() check doesn't mention the
function since it didn't execute a single function but a whole frame.
- Use _testcapi.raise_signal() in test_signal
- close also os.pipe() file descriptors in some test_signal tests where they
were not closed properly
- Remove faulthandler._sigill() and faulthandler._sigbus(): reuse
_testcapi.raise_signal() in test_faulthandler
PyObject_Calloc(), _PyObject_GC_Calloc(). bytes(int) and bytearray(int) are now
using ``calloc()`` instead of ``malloc()`` for large objects which is faster
and use less memory (until the bytearray buffer is filled with data).
The new syntax is highly human readable while still preventing false
positives. The syntax also extends Python syntax to denote "self" and
positional-only parameters, allowing inspect.Signature objects to be
totally accurate for all supported builtins in Python 3.4.
annotate text signatures in docstrings, resulting in fewer false
positives. "self" parameters are also explicitly marked, allowing
inspect.Signature() to authoritatively detect (and skip) said parameters.
Issue #20326: Argument Clinic now generates separate checksums for the
input and output sections of the block, allowing external tools to verify
that the input has not changed (and thus the output is not out-of-date).
PyMethodDescr_Type, _PyMethodWrapper_Type, and PyWrapperDescr_Type)
have been modified to provide introspection information for builtins.
Also: many additional Lib, test suite, and Argument Clinic fixes.
* You may now specify an expression as the default value for a
parameter! Example: "sys.maxsize - 1". This support is
intentionally quite limited; you may only use values that
can be represented as static C values.
* Removed "doc_default", simplified support for "c_default"
and "py_default". (I'm not sure we still even need
"py_default", but I'm leaving it in for now in case a
use presents itself.)
* Parameter lines support a trailing '\\' as a line
continuation character, allowing you to break up long lines.
* The argument parsing code generated when supporting optional
groups now uses PyTuple_GET_SIZE instead of PyTuple_GetSize,
leading to a 850% speedup in parsing. (Just kidding, this
is an unmeasurable difference.)
* A bugfix for the recent regression where the generated
prototype from pydoc for builtins would be littered with
unreadable "=<object ...>"" default values for parameters
that had no default value.
* Converted some asserts into proper failure messages.
* Many doc improvements and fixes.
the function did nothing if the key already exists (if the current value is a
non-NULL pointer).
_testcapi.run_in_subinterp() now correctly sets the new Python thread state of
the current thread when a subinterpreter is created.
Fix a crash when a generator is created in a C thread that is destroyed while
the generator is still used. The issue was that a generator contains a frame,
and the frame kept a reference to the Python state of the destroyed C thread.
The crash occurs when a trace function is setup.
crash when a generator is created in a C thread that is destroyed while the
generator is still used. The issue was that a generator contains a frame, and
the frame kept a reference to the Python state of the destroyed C thread. The
crash occurs when a trace function is setup.
Add new enum:
* PyMemAllocatorDomain
Add new structures:
* PyMemAllocator
* PyObjectArenaAllocator
Add new functions:
* PyMem_RawMalloc(), PyMem_RawRealloc(), PyMem_RawFree()
* PyMem_GetAllocator(), PyMem_SetAllocator()
* PyObject_GetArenaAllocator(), PyObject_SetArenaAllocator()
* PyMem_SetupDebugHooks()
Changes:
* PyMem_Malloc()/PyObject_Realloc() now always call malloc()/realloc(), instead
of calling PyObject_Malloc()/PyObject_Realloc() in debug mode.
* PyObject_Malloc()/PyObject_Realloc() now falls back to
PyMem_Malloc()/PyMem_Realloc() for allocations larger than 512 bytes.
* Redesign debug checks on memory block allocators as hooks, instead of using C
macros
* Add a new PyMemAllocators structure
* New functions:
- PyMem_RawMalloc(), PyMem_RawRealloc(), PyMem_RawFree(): GIL-free memory
allocator functions
- PyMem_GetRawAllocators(), PyMem_SetRawAllocators()
- PyMem_GetAllocators(), PyMem_SetAllocators()
- PyMem_SetupDebugHooks()
- _PyObject_GetArenaAllocators(), _PyObject_SetArenaAllocators()
* Add unit test for PyMem_Malloc(0) and PyObject_Malloc(0)
* Add unit test for new get/set allocators functions
* PyObject_Malloc() now falls back on PyMem_Malloc() instead of malloc() if
size is bigger than SMALL_REQUEST_THRESHOLD, and PyObject_Realloc() falls
back on PyMem_Realloc() instead of realloc()
* PyMem_Malloc() and PyMem_Realloc() now always call malloc() and realloc(),
instead of calling PyObject_Malloc() and PyObject_Realloc() in debug mode
They're optional-only for now (unlike in pure Python) but that's all
I needed. The syntax can easily be relaxed if we want to support
required keyword-only arguments for extension types in the future.
time.ctime(), gmtime(), time.localtime(), datetime.date.fromtimestamp(),
datetime.datetime.fromtimestamp() and datetime.datetime.utcfromtimestamp() now
raises an OverflowError, instead of a ValueError, if the timestamp does not fit
in time_t.
datetime.datetime.fromtimestamp() and datetime.datetime.utcfromtimestamp() now
round microseconds towards zero instead of rounding to nearest with ties going
away from zero.