svn+ssh://pythondev@svn.python.org/python/trunk
........
r78189 | mark.dickinson | 2010-02-14 13:40:30 +0000 (Sun, 14 Feb 2010) | 1 line
Silence more 'comparison between signed and unsigned' warnings.
........
svn+ssh://pythondev@svn.python.org/python/trunk
........
r77821 | mark.dickinson | 2010-01-29 17:11:39 +0000 (Fri, 29 Jan 2010) | 3 lines
Issue #7788: Fix a crash produced by deleting a list slice with huge
step value. Patch by Marcin Bachry.
........
was not always being done properly in some python types and extension
modules. PyMem_MALLOC, PyMem_REALLOC, PyMem_NEW and PyMem_RESIZE have
all been updated to perform better checks and places in the code that
would previously leak memory on the error path when such an allocation
failed have been fixed.
Added checks for integer overflows, contributed by Google. Some are
only available if asserts are left in the code, in cases where they
can't be triggered from Python code.
- Specialcase extended slices that amount to a shallow copy the same way as
is done for simple slices, in the tuple, string and unicode case.
- Specialcase step-1 extended slices to optimize the common case for all
involved types.
- For lists, allow extended slice assignment of differing lengths as long
as the step is 1. (Previously, 'l[:2:1] = []' failed even though
'l[:2] = []' and 'l[:2:None] = []' do not.)
- Implement extended slicing for buffer, array, structseq, mmap and
UserString.UserString.
- Implement slice-object support (but not non-step-1 slice assignment) for
UserString.MutableString.
- Add tests for all new functionality.
I modified this patch some by fixing style, some error checking, and adding
XXX comments. This patch requires review and some changes are to be expected.
I'm checking in now to get the greatest possible review and establish a
baseline for moving forward. I don't want this to hold up release if possible.
This is the first batch of fixes that should be easy to verify based on context.
This fixes problem numbers: 220 (ast), 323-324 (symtable),
321-322 (structseq), 215 (array), 210 (hotshot), 182 (codecs), 209 (etree).
the char buffer was requested. Now it actually returns the char buffer if
available or raises a TypeError if it isn't (as is raised for the other buffer
types if they are not present but requested).
Not a backport candidate since it does change semantics of the buffer object
(although it could be argued this is enough of a bug to bother backporting).
* Added socket.recv_buf() and socket.recvfrom_buf() methods, that use the buffer
protocol (send and sendto already did).
* Added struct.pack_to(), that is the corresponding buffer compatible method to
unpack_from().
* Fixed minor typos in arraymodule.
using a custom, nearly-identical macro. This probably changes how some of
these functions are compiled, which may result in fractionally slower (or
faster) execution. Considering the nature of traversal, visiting much of the
address space in unpredictable patterns, I'd argue the code readability and
maintainability is well worth it ;P
array.extend() now accepts iterable arguments implements as a series
of appends. Besides being a user convenience and matching the behavior
for lists, this the saves memory and cycles that would be used to
create a temporary array object.
lists. Speeds append() operations and reduces memory requirements
(because of more conservative overallocation).
Paves the way for the feature request for array.extend() to support
arbitrary iterable arguments.
Fixed leak caused by switching from PyList_GetItem to PySequence_GetItem.
Added missing NULL check.
Clarified code by converting an "if" to an "else if".
Will backport to 2.3.
(contributed by logistix; substantially reworked by rhettinger).
To create a representation of non-string arrays, array_repr() was
starting with a base Python string object and repeatedly using +=
to concatenate the representation of individual objects.
Logistix had the idea to convert to an intermediate tuple form and
then join it all at once. I took advantage of existing tools and
formed a list with array_tolist() and got its representation through
PyObject_Repr(v) which already has a fast implementation for lists.