d1 == d2 and d1 != d2 now work even if the keys and values in d1 and d2
don't support comparisons other than ==, and testing dicts for equality
is faster now (especially when inequality obtains).
dictionary size was comparing ma_size, the hash table size, which is
always a power of two, rather than ma_used, wich changes on each
insertion or deletion. Fixed this.
sees it (test_iter.py is unchanged).
- Added a tp_iternext slot, which calls the iterator's next() method;
this is much faster for built-in iterators over built-in types
such as lists and dicts, speeding up pybench's ForLoop with about
25% compared to Python 2.1. (Now there's a good argument for
iterators. ;-)
- Renamed the built-in sequence iterator SeqIter, affecting the C API
functions for it. (This frees up the PyIter prefix for generic
iterator operations.)
- Added PyIter_Check(obj), which checks that obj's type has a
tp_iternext slot and that the proper feature flag is set.
- Added PyIter_Next(obj) which calls the tp_iternext slot. It has a
somewhat complex return condition due to the need for speed: when it
returns NULL, it may not have set an exception condition, meaning
the iterator is exhausted; when the exception StopIteration is set
(or a derived exception class), it means the same thing; any other
exception means some other error occurred.
new slot tp_iter in type object, plus new flag Py_TPFLAGS_HAVE_ITER
new C API PyObject_GetIter(), calls tp_iter
new builtin iter(), with two forms: iter(obj), and iter(function, sentinel)
new internal object types iterobject and calliterobject
new exception StopIteration
new opcodes for "for" loops, GET_ITER and FOR_ITER (also supported by dis.py)
new magic number for .pyc files
new special method for instances: __iter__() returns an iterator
iteration over dictionaries: "for x in dict" iterates over the keys
iteration over files: "for x in file" iterates over lines
TODO:
documentation
test suite
decide whether to use a different way to spell iter(function, sentinal)
decide whether "for key in dict" is a good idea
use iterators in map/filter/reduce, min/max, and elsewhere (in/not in?)
speed tuning (make next() a slot tp_next???)
I know some people don't like this -- if it's really controversial,
I'll take it out again. (If it's only Alex Martelli who doesn't like
it, that doesn't count as "real controversial" though. :-)
That's why this is a separate checkin from the iterators stuff I'm
about to check in next.
PyTuple_New() could *conceivably* clear the dict, so move the test for
an empty dict after the tuple allocation. It means that we waste time
allocating and deallocating a 2-tuple when the dict is empty, but who
cares. It also means that when the dict is empty *and* there's no
memory to allocate a 2-tuple, we raise MemoryError, not KeyError --
but that may actually a good idea: if there's no room for a lousy
2-tuple, what are the chances that there's room for a KeyError
instance?
and reported to python-dev: because we were calling dict_resize() in
PyDict_Next(), and because GC's dict_traverse() uses PyDict_Next(),
and because PyTuple_New() can cause GC, and because dict_items() calls
PyTuple_New(), it was possible for dict_items() to have the dict
resized right under its nose.
The solution is convoluted, and touches several places: keys(),
values(), items(), popitem(), PyDict_Next(), and PyDict_SetItem().
There are two parts to it. First, we no longer call dict_resize() in
PyDict_Next(), which seems to solve the immediate problem. But then
PyDict_SetItem() must have a different policy about when *it* calls
dict_resize(), because we want to guarantee (e.g. for an algorithm
that Jeremy uses in the compiler) that you can loop over a dict using
PyDict_Next() and make changes to the dict as long as those changes
are only value replacements for existing keys using PyDict_SetItem().
This is done by resizing *after* the insertion instead of before, and
by remembering the size before we insert the item, and if the size is
still the same, we don't bother to even check if we might need to
resize. An additional detail is that if the dict starts out empty, we
must still resize it before the insertion.
That was the first part. :-)
The second part is to make keys(), values(), items(), and popitem()
safe against side effects on the dict caused by allocations, under the
assumption that if the GC can cause arbitrary Python code to run, it
can cause other threads to run, and it's not inconceivable that our
dict could be resized -- it would be insane to write code that relies
on this, but not all code is sane.
Now, I have this nagging feeling that the loops in lookdict probably
are blissfully assuming that doing a simple key comparison does not
change the dict's size. This is not necessarily true (the keys could
be class instances after all). But that's a battle for another day.
- Use PyObject_RichCompareBool() when comparing keys; this makes the
error handling cleaner.
- There were two implementations for dictionary comparison, an old one
(#ifdef'ed out) and a new one. Got rid of the old one, which was
abandoned years ago.
- In the characterize() function, part of dictionary comparison, use
PyObject_RichCompareBool() to compare keys and values instead. But
continue to use PyObject_Compare() for comparing the final
(deciding) elements.
- Align the comments in the type struct initializer.
Note: I don't implement rich comparison for dictionaries -- there
doesn't seem to be much to be gained. (The existing comparison
already decides that shorter dicts are always smaller than longer
dicts.)
exception context. This avoids improperly propogating errors raised by
a user-defined __cmp__() by a subsequent lookup operation.
This patch does *not* include the performance enhancement patch for
dictionaries with string keys only; that will be checked in separately.
This closes SourceForge patch #101277 and bug #112558.
comments, docstrings or error messages. I fixed two minor things in
test_winreg.py ("didn't" -> "Didn't" and "Didnt" -> "Didn't").
There is a minor style issue involved: Guido seems to have preferred English
grammar (behaviour, honour) in a couple places. This patch changes that to
American, which is the more prominent style in the source. I prefer English
myself, so if English is preferred, I'd be happy to supply a patch myself ;)
implementation. This was really to test whether my new CVS+SSH
setup is more usable than the old one -- and turns out it is (for
whatever reason, it was impossible to do a commit before that
involved more than one directory).
This patch modifies the type structures of objects that
participate in GC. The object's tp_basicsize is increased when
GC is enabled. GC information is prefixed to the object to
maintain binary compatibility. GC objects also define the
tp_flag Py_TPFLAGS_GC.
For more comments, read the patches@python.org archives.
For documentation read the comments in mymalloc.h and objimpl.h.
(This is not exactly what Vladimir posted to the patches list; I've
made a few changes, and Vladimir sent me a fix in private email for a
problem that only occurs in debug mode. I'm also holding back on his
change to main.c, which seems unnecessary to me.)
Added wrapping macros to dictobject.c, listobject.c, tupleobject.c,
frameobject.c, traceback.c that safely prevends core dumps
on stack overflow. Macros and functions in object.c, object.h.
The method is an "elevator destructor" that turns cascading
deletes into tail recursive behavior when some limit is hit.
Sparc Solaris 2.6 (fully patched!) that I don't want to dig into, but
which I suspect is a bug in the multithreaded malloc library that only
shows up when run on a multiprocessor. (The program wasn't using
threads, it was just using the multithreaded C library.)
__getitem__(). This method never raises an exception; if the key is
not in the dictionary, the second (optional) argument is returned. If
the second argument is not provided and the key is missing, None is
returned.
mapp_methods: added "get" method.
complexity saved much any more. A simple benchmark (grail) showed
that there were 3 times as many misses as hits, and the same number of
times again the code was bypassed altogether due to the existence of
setattro/getattro.
The table size is now constrained to be a power of two, and we use a
variable increment based on GF(2^n)-{0} (not that I have the faintest
idea what that is :-) which helps avoid the expensive '%' operation.
Some of the entries in the table of polynomials have been modified
according to a post by Tim Peters.
defines that a shorter dictionary is always smaller than a longer one.
For dictionaries of the same size, the smallest differing element
determines the outcome (which yields the same results as before,
without explicit sorting).
* posixmodule.c: don't prototype getcwd() -- it's not portable...
* mappingobject.c: double-check validity of last_name_char in
dict{lookup,insert,remove}.
* arraymodule.c: need memmove only for non-STDC Suns.
* Makefile: comment out HTML_LIBS and XT_USE by default
* pythonmain.c: don't prototype getopt() -- it's not standardized
* socketmodule.c: cast flags arg to {get,set}sockopt() and addrbuf arg to
recvfrom() to (ANY*).
* pythonrun.c (initsigs): fix prototype, make it static
* intobject.c (LONG_BIT): only #define it if not already defined
* classobject.[ch]: remove all references to unused instance_convert()
* mappingobject.c (getmappingsize): Don't return NULL in int function.
* {tuple,list,mapping,array}object.c: call printobject with 0 for flags
* compile.c (parsestr): use quote instead of '\'' at one crucial point
* arraymodule.c (array_getattr): Added __members__ attribute
(1) dictionaries/mappings now have attributes values() and items() as
well as keys(); at the C level, use the new function mappinggetnext()
to iterate over a dictionary.
(2) "class C(): ..." is now illegal; you must write "class C: ...".
(3) Class objects now know their own name (finally!); and minor
improvements to the way how classes, functions and methods are
represented as strings.
(4) Added an "access" statement and semantics. (This is still
experimental -- as long as you don't use the keyword 'access' nothing
should be changed.)
* Stubs for faster implementation of local variables (not yet finished)
* Added function name to code object. Print it for code and function
objects. THIS MAKES THE .PYC FILE FORMAT INCOMPATIBLE (the version
number has changed accordingly)
* Print address of self for built-in methods
* New internal functions getattro and setattro (getattr/setattr with
string object arg)
* Replaced "dictobject" with more powerful "mappingobject"
* New per-type functio tp_hash to implement arbitrary object hashing,
and hashobject() to interface to it
* Added built-in functions hash(v) and hasattr(v, 'name')
* classobject: made some functions static that accidentally weren't;
added __hash__ special instance method to implement hash()
* Added proper comparison for built-in methods and functions