There are plenty of legitimate scripts in the tree that begin with a
`#!`, but also a few that seem to be marked executable by mistake.
Found them with this command -- it gets executable files known to Git,
filters to the ones that don't start with a `#!`, and then unmarks
them as executable:
$ git ls-files --stage \
| perl -lane 'print $F[3] if (!/^100644/)' \
| while read f; do
head -c2 "$f" | grep -qxF '#!' \
|| chmod a-x "$f"; \
done
Looking at the list by hand confirms that we didn't sweep up any
files that should have the executable bit after all. In particular
* The `.psd` files are images from Photoshop.
* The `.bat` files sure look like things that can be run.
But we have lots of other `.bat` files, and they don't have
this bit set, so it must not be needed for them.
Automerge-Triggered-By: @benjaminp
The fact that keyword names are strings is now part of the vectorcall and `METH_FASTCALL` protocols. The biggest concrete change is that `_PyStack_UnpackDict` now checks that and raises `TypeError` if not.
CC @markshannon @vstinner
https://bugs.python.org/issue37540
sys._base_executable is now always defined on all platforms, and can be overridden through configuration.
Also adds test.support.PythonSymlink to encapsulate platform-specific logic for symlinking sys.executable
Python now gets the absolute path of the script filename specified on
the command line (ex: "python3 script.py"): the __file__ attribute of
the __main__ module, sys.argv[0] and sys.path[0] become an absolute
path, rather than a relative path.
* Add _Py_isabs() and _Py_abspath() functions.
* _PyConfig_Read() now tries to get the absolute path of
run_filename, but keeps the relative path if _Py_abspath() fails.
* Reimplement os._getfullpathname() using _Py_abspath().
* Use _Py_isabs() in getpath.c.
Remove sys.getcheckinterval() and sys.setcheckinterval() functions.
They were deprecated since Python 3.2. Use sys.getswitchinterval()
and sys.setswitchinterval() instead.
Remove also check_interval field of the PyInterpreterState structure.
* Rename PyImport_Cleanup() to _PyImport_Cleanup() and move it to the
internal C API. Add 'tstate' parameters.
* Remove documentation of _PyImport_Init(), PyImport_Cleanup(),
_PyImport_Fini(). All three were documented as "For internal use
only.".
* Add 'tstate' parameter to many internal import.c functions.
* _PyImportZip_Init() now gets 'tstate' parameter rather than
'interp'.
* Add 'interp' parameter to _PyState_ClearModules() and rename it
to _PyInterpreterState_ClearModules().
* Move private _PyImport_FindBuiltin() to the internal C API; add
'tstate' parameter to it.
* Remove private _PyImport_AddModuleObject() from the C API:
use public PyImport_AddModuleObject() instead.
* Remove private _PyImport_FindExtensionObjectEx() from the C API:
use private _PyImport_FindExtensionObject() instead.
* Add Include/cpython/import.h and Include/internal/pycore_import.h
header files.
* Move _PyImport_ReInitLock() to the internal C API. Don't export the
symbol anymore.
Add a new public PyObject_CallNoArgs() function to the C API: call a
callable Python object without any arguments.
It is the most efficient way to call a callback without any argument.
On x86-64, for example, PyObject_CallFunctionObjArgs(func, NULL)
allocates 960 bytes on the stack per call, whereas
PyObject_CallNoArgs(func) only allocates 624 bytes per call.
It is excluded from stable ABI 3.8.
Replace private _PyObject_CallNoArg() with public
PyObject_CallNoArgs() in C extensions: _asyncio, _datetime,
_elementtree, _pickle, _tkinter and readline.
* Replace global var Py_VerboseFlag with interp->config.verbose.
* Add _PyErr_NoMemory(tstate) function.
* Add tstate parameter to _PyEval_SetCoroutineOriginTrackingDepth()
and move the function to the internal API.
* Replace _PySys_InitMain(runtime, interp)
with _PySys_InitMain(runtime, tstate).
Add a new _PyCompilerFlags_INIT macro to initialize PyCompilerFlags
variables, rather than initializing cf_flags and cf_feature_version
explicitly in each variable.
It is now allowed to add new fields at the end of the PyTypeObject struct without having to allocate a dedicated compatibility flag in tp_flags.
This will reduce the risk of running out of bits in the 32-bit tp_flags value.
* bpo-22385: Support output separators in hex methods.
Also in binascii.hexlify aka b2a_hex.
The underlying implementation behind all hex generation in CPython uses the
same pystrhex.c implementation. This adds support to bytes, bytearray,
and memoryview objects.
The binascii module functions exist rather than being slated for deprecation
because they return bytes rather than requiring an intermediate step through a
str object.
This change was inspired by MicroPython which supports sep in its binascii
implementation (and does not yet support the .hex methods).
https://bugs.python.org/issue22385