PyDict_UpdateFromSeq2(): removed it.
PyDict_MergeFromSeq2(): made it public and documented it.
PyDict_Merge() docs: updated to reveal <wink> that the second
argument can be any mapping object.
type.__module__ behavior.
This adds the module name and a dot in front of the type name in every
type object initializer, except for built-in types (and those that
already had this). Note that it touches lots of Mac modules -- I have
no way to test these but the changes look right. Apologies if they're
not. This also touches the weakref docs, which contains a sample type
object initializer. It also touches the mmap test output, because the
mmap type's repr is included in that output. It touches object.h to
put the correct description in a comment.
Big Hammer to implement -Qnew as PEP 238 says it should work (a global
option affecting all instances of "/").
pydebug.h, main.c, pythonrun.c: define a private _Py_QnewFlag flag, true
iff -Qnew is passed on the command line. This should go away (as the
comments say) when true division becomes The Rule. This is
deliberately not exposed to runtime inspection or modification: it's
a one-way one-shot switch to pretend you're using Python 3.
ceval.c: when _Py_QnewFlag is set, treat BINARY_DIVIDE as
BINARY_TRUE_DIVIDE.
test_{descr, generators, zipfile}.py: fiddle so these pass under
-Qnew too. This was just a matter of s!/!//! in test_generators and
test_zipfile. test_descr was trickier, as testbinop() is passed
assumptions that "/" is the same as calling a "__div__" method; put
a temporary hack there to call "__truediv__" instead when the method
name is "__div__" and 1/2 evaluates to 0.5.
Three standard tests still fail under -Qnew (on Windows; somebody
please try the Linux tests with -Qnew too! Linux runs a whole bunch
of tests Windows doesn't):
test_augassign
test_class
test_coercion
I can't stay awake longer to stare at this (be my guest). Offhand
cures weren't obvious, nor was it even obvious that cures are possible
without major hackery.
Question: when -Qnew is in effect, should calls to __div__ magically
change into calls to __truediv__? See "major hackery" at tail end of
last paragraph <wink>.
There's now a new structmember code, T_OBJECT_EX, which is used for
all __slot__ variables (except __weakref__, which has special behavior
anyway). This new code raises AttributeError when the variable is
NULL rather than converting NULL to None.
use wrappers on all platforms, to make this as consistent as possible x-
platform (in particular, make sure there's at least one \0 byte in
the output buffer). Also document more of the truth about what these do.
getargs.c, seterror(): Three computations of remaining buffer size were
backwards, thus telling PyOS_snprintf the buffer is larger than it
actually is. This matters a lot now that PyOS_snprintf ensures there's a
trailing \0 byte (because it didn't get the truth about the buffer size,
it was storing \0 beyond the true end of the buffer).
sysmodule.c, mywrite(): Simplify, now that PyOS_vsnprintf guarantees to
produce a \0 byte.
const char* instead of char*. The change is conceptually correct, and
indirectly fixes a compiler wng introduced when somebody else innocently
passed a const char* to this function.
RISCOS/Makefile:
include structseq and weakrefobject;
changes to keep command line length below 2048
RISCOS/Modules/riscosmodule.c:
typos from the stat structseq patch
Include/pyport.h:
don't re-#define __attribute__(__x) on RISC OS as it is already defined in c library
object.h: Added PyType_CheckExact macro.
typeobject.c, type_new():
+ Use the new macro.
+ Assert that the arguments have the right types rather than do incomplete
runtime checks "sometimes".
+ If this isn't the 1-argument flavor() of type, and there aren't 3 args
total, produce a "types() takes 1 or 3 args" msg before
PyArg_ParseTupleAndKeywords produces a "takes exactly 3" msg.
PyObject_CallFunctionObArgs() and PyObject_CallMethodObArgs() have the
advantage that no format strings need to be parsed. The CallMethod
variant also avoids creating a new string object in order to retrieve
a method from an object as well.
outer level, the iterator protocol is used for memory-efficiency (the
outer sequence may be very large if fully materialized); at the inner
level, PySequence_Fast() is used for time-efficiency (these should
always be sequences of length 2).
dictobject.c, new functions PyDict_{Merge,Update}FromSeq2. These are
wholly analogous to PyDict_{Merge,Update}, but process a sequence-of-2-
sequences argument instead of a mapping object. For now, I left these
functions file static, so no corresponding doc changes. It's tempting
to change dict.update() to allow a sequence-of-2-seqs argument too.
Also changed the name of dictionary's keyword argument from "mapping"
to "x". Got a better name? "mapping_or_sequence_of_pairs" isn't
attractive, although more so than "mosop" <wink>.
abstract.h, abstract.tex: Added new PySequence_Fast_GET_SIZE function,
much faster than going thru the all-purpose PySequence_Size.
libfuncs.tex:
- Document dictionary().
- Fiddle tuple() and list() to admit that their argument is optional.
- The long-winded repetitions of "a sequence, a container that supports
iteration, or an iterator object" is getting to be a PITA. Many
months ago I suggested factoring this out into "iterable object",
where the definition of that could include being explicit about
generators too (as is, I'm not sure a reader outside of PythonLabs
could guess that "an iterator object" includes a generator call).
- Please check my curly braces -- I'm going blind <0.9 wink>.
abstract.c, PySequence_Tuple(): When PyObject_GetIter() fails, leave
its error msg alone now (the msg it produces has improved since
PySequence_Tuple was generalized to accept iterable objects, and
PySequence_Tuple was also stomping on the msg in cases it shouldn't
have even before PyObject_GetIter grew a better msg).
STRICT_SYSV_CURSES when compiling curses module on HP/UX. Generalize
access to _flags on systems where WINDOW is opaque. Fixes bugs
#432497, #422265, and the curses parts of #467145 and #473150.
'slotdef' structure typedef and 'struct wrapperbase'. By adding the
wrapper docstrings to the slotdef structure, the slotdefs array can
serve as the data structure that drives add_operators(); the wrapper
descriptor contains a pointer to slotdef structure. This replaces
lots of custom code from add_operators() by a loop over the slotdefs
array, and does away with all the tab_xxx tables.
This patch implements what we have discussed on python-dev late in
September: str(obj) and unicode(obj) should behave similar, while
the old behaviour is retained for unicode(obj, encoding, errors).
The patch also adds a new feature with which objects can provide
unicode(obj) with input data: the __unicode__ method. Currently no
new tp_unicode slot is implemented; this is left as option for the
future.
Note that PyUnicode_FromEncodedObject() no longer accepts Unicode
objects as input. The API name already suggests that Unicode
objects do not belong in the list of acceptable objects and the
functionality was only needed because
PyUnicode_FromEncodedObject() was being used directly by
unicode(). The latter was changed in the discussed way:
* unicode(obj) calls PyObject_Unicode()
* unicode(obj, encoding, errors) calls PyUnicode_FromEncodedObject()
One thing left open to discussion is whether to leave the
PyUnicode_FromObject() API as a thin API extension on top of
PyUnicode_FromEncodedObject() or to turn it into a (macro) alias
for PyObject_Unicode() and deprecate it. Doing so would have some
surprising consequences though, e.g. u"abc" + 123 would turn out
as u"abc123"...
[Marc-Andre didn't have time to check this in before the deadline. I
hope this is OK, Marc-Andre! You can still make changes and commit
them on the trunk after the branch has been made, but then please mail
Barry a context diff if you want the change to be merged into the
2.2b1 release branch. GvR]
This is a big one, touching lots of files. Some of the platforms
aren't tested yet. Briefly, this changes the return value of the
os/posix functions stat(), fstat(), statvfs(), fstatvfs(), and the
time functions localtime(), gmtime(), and strptime() from tuples into
pseudo-sequences. When accessed as a sequence, they behave exactly as
before. But they also have attributes like st_mtime or tm_year. The
stat return value, moreover, has a few platform-specific attributes
that are not available through the sequence interface (because
everybody expects the sequence to have a fixed length, these couldn't
be added there). If your platform's struct stat doesn't define
st_blksize, st_blocks or st_rdev, they won't be accessible from Python
either.
(Still missing is a documentation update.)
This changes Pythread_start_thread() to return the thread ID, or -1
for an error. (It's technically an incompatible API change, but I
doubt anyone calls it.)
"for <var> in <testlist> may no longer be a single test followed by
a comma. This solves SF bug #431886. Note that if the testlist
contains more than one test, a trailing comma is still allowed, for
maximum backward compatibility; but this example is not:
[(x, y) for x in range(10), for y in range(10)]
^
The fix involved creating a new nonterminal 'testlist_safe' whose
definition doesn't allow the trailing comma if there's only one test:
testlist_safe: test [(',' test)+ [',']]
The platform requires 8-byte alignment for doubles, but the GC header
was 12 bytes and that threw off the natural alignment of the double
members of a subtype of complex. The fix puts the GC header into a
union with a double as the other member, to force no-looser-than
double alignment of GC headers. On boxes that require 8-byte alignment
for doubles, this may add pad bytes to the GC header accordingly; ditto
for platforms that *prefer* 8-byte alignment for doubles. On platforms
that don't care, it shouldn't change the memory layout (because the
size of the old GC header is certainly greater than the size of a double
on all platforms, so unioning with a double shouldn't change size or
alignment on such boxes).
is a list of weak references to types (new-style classes). Make this
accessible to Python as the function __subclasses__ which returns a
list of types -- we don't want Python programmers to be able to
manipulate the raw list.
In order to make this possible, I also had to add weak reference
support to type objects.
This will eventually be used together with a trap on attribute
assignment for dynamic classes for a major speed-up without losing the
dynamic properties of types: when a __foo__ method is added to a
class, the class and all its subclasses will get an appropriate tp_foo
slot function.
This simplifies the rounding in _PyObject_VAR_SIZE, allows to restore the
pre-rounding calling sequence, and allows some nice little simplifications
in its callers. I'm still making it return a size_t, though.
As Guido suggested, this makes the new subclassing code substantially
simpler. But the mechanics of doing it w/ C macro semantics are a mess,
and _PyObject_VAR_SIZE has a new calling sequence now.
Question: The PyObject_NEW_VAR macro appears to be part of the public API.
Regardless of what it expands to, the notion that it has to round up the
memory it allocates is new, and extensions containing the old
PyObject_NEW_VAR macro expansion (which was embedded in the
PyObject_NEW_VAR expansion) won't do this rounding. But the rounding
isn't actually *needed* except for new-style instances with dict pointers
after a variable-length blob of embedded data. So my guess is that we do
not need to bump the API version for this (as the rounding isn't needed
for anything an extension can do unless it's recompiled anyway). What's
your guess?
pad memory to properly align the __dict__ pointer in all cases.
gcmodule.c/objimpl.h, _PyObject_GC_Malloc:
+ Added a "padding" argument so that this flavor of malloc can allocate
enough bytes for alignment padding (it can't know this is needed, but
its callers do).
typeobject.c, PyType_GenericAlloc:
+ Allocated enough bytes to align the __dict__ pointer.
+ Sped and simplified the round-up-to-PTRSIZE logic.
+ Added blank lines so I could parse the if/else blocks <0.7 wink>.
test dramatically:
class T(tuple): __dynamic__ = 1
t = T(range(1000))
for i in range(1000): tt = tuple(t)
The speedup was about 5x compared to the previous state of CVS (1.7
vs. 8.8, in arbitrary time units). But it's still more than twice as
slow as as the same test with __dynamic__ = 0 (0.8).
I'm not sure that I really want to go through the trouble of this kind
of speedup for every slot. Even doing it just for the most popular
slots will be a major effort (the new slot_sq_item is 40+ lines, while
the old one was one line with a powerful macro -- unfortunately the
speedup comes from expanding the macro and doing things in a way
specific to the slot signature).
An alternative that I'm currently considering is sketched in PLAN.txt:
trap setattr on type objects. But this will require keeping track of
all derived types using weak references.
instances).
Also added GC support to various auxiliary types: super, property,
descriptors, wrappers, dictproxy. (Only type objects have a tp_clear
field; the other types are.)
One change was necessary to the GC infrastructure. We have statically
allocated type objects that don't have a GC header (and can't easily
be given one) and heap-allocated type objects that do have a GC
header. Giving these different metatypes would be really ugly: I
tried, and I had to modify pickle.py, cPickle.c, copy.py, add a new
invent a new name for the new metatype and make it a built-in, change
affected tests... In short, a mess. So instead, we add a new type
slot tp_is_gc, which is a simple Boolean function that determines
whether a particular instance has GC headers or not. This slot is
only relevant for types that have the (new) GC flag bit set. If the
tp_is_gc slot is NULL (by far the most common case), all instances of
the type are deemed to have GC headers. This slot is called by the
PyObject_IS_GC() macro (which is only used twice, both times in
gcmodule.c).
I also changed the extern declarations for a bunch of GC-related
functions (_PyObject_GC_Del etc.): these always exist but objimpl.h
only declared them when WITH_CYCLE_GC was defined, but I needed to be
able to reference them without #ifdefs. (When WITH_CYCLE_GC is not
defined, they do the same as their non-GC counterparts anyway.)
The patch repaired internal gcc compiler errors on BeOS.
This checkin repairs them in a simpler way, by explicitly casting the
platform INFINITY to double.
no backwards compatibility to worry about, so I just pushed the
'closure' struct member to the back -- it's never used in the current
code base (I may eliminate it, but that's more work because the getter
and setter signatures would have to change.)
As examples, I added actual docstrings to the getset attributes of a
few types: file.closed, xxsubtype.spamdict.state.
compatibility, this required all places where an array of "struct
memberlist" structures was declared that is referenced from a type's
tp_members slot to change the type of the structure to PyMemberDef;
"struct memberlist" is now only used by old code that still calls
PyMember_Get/Set. The code in PyObject_GenericGetAttr/SetAttr now
calls the new APIs PyMember_GetOne/SetOne, which take a PyMemberDef
argument.
As examples, I added actual docstrings to the attributes of a few
types: file, complex, instance method, super, and xxsubtype.spamlist.
Also converted the symtable to new style getattr.
hack, and it's even more disgusting than a PyInstance_Check() call.
If the tp_compare slot is the slot used for overrides in Python,
it's always called.
Add some tests that show what should work too.
Renamed the 'readonly' field to 'flags' and defined some new flag
bits: READ_RESTRICTED and WRITE_RESTRICTED, as well as a shortcut
RESTRICTED that means both.
tuple(i) repaired to return a true tuple when i is an instance of a
tuple subclass.
Added PyTuple_CheckExact macro.
PySequence_Tuple(): if a tuple-like object isn't exactly a tuple, it's
not safe to return the object as-is -- make a new tuple of it instead.
Given an immutable type M, and an instance I of a subclass of M, the
constructor call M(I) was just returning I as-is; but it should return a
new instance of M. This fixes it for M in {int, long}. Strings, floats
and tuples remain to be done.
Added new macros PyInt_CheckExact and PyLong_CheckExact, to more easily
distinguish between "is" and "is a" (i.e., only an int passes
PyInt_CheckExact, while any sublass of int passes PyInt_Check).
Added private API function _PyLong_Copy.
iterable object. I'm not sure how that got overlooked before!
Got rid of the internal _PySequence_IterContains, introduced a new
internal _PySequence_IterSearch, and rewrote all the iteration-based
"count of", "index of", and "is the object in it or not?" routines to
just call the new function. I suppose it's slower this way, but the
code duplication was getting depressing.
While not even documented, they were clearly part of the C API,
there's no great difficulty to support them, and it has the cool
effect of not requiring any changes to ExtensionClass.c.
requires that errno ever get set, and it looks like glibc is already
playing that game. New rules:
+ Never use HUGE_VAL. Use the new Py_HUGE_VAL instead.
+ Never believe errno. If overflow is the only thing you're interested in,
use the new Py_OVERFLOWED(x) macro. If you're interested in any libm
errors, use the new Py_SET_ERANGE_IF_OVERFLOW(x) macro, which attempts
to set errno the way C89 said it worked.
Unfortunately, none of these are reliable, but they work on Windows and I
*expect* under glibc too.
but will be the foundation for Good Things:
+ Speed PyLong_AsDouble.
+ Give PyLong_AsDouble the ability to detect overflow.
+ Make true division of long/long nearly as accurate as possible (no
spurious infinities or NaNs).
+ Return non-insane results from math.log and math.log10 when passing a
long that can't be approximated by a double better than HUGE_VAL.
PEP 238. Changes:
- add a new flag variable Py_DivisionWarningFlag, declared in
pydebug.h, defined in object.c, set in main.c, and used in
{int,long,float,complex}object.c. When this flag is set, the
classic division operator issues a DeprecationWarning message.
- add a new API PyRun_SimpleStringFlags() to match
PyRun_SimpleString(). The main() function calls this so that
commands run with -c can also benefit from -Dnew.
- While I was at it, I changed the usage message in main() somewhat:
alphabetized the options, split it in *four* parts to fit in under
512 bytes (not that I still believe this is necessary -- doc strings
elsewhere are much longer), and perhaps most visibly, don't display
the full list of options on each command line error. Instead, the
full list is only displayed when -h is used, and otherwise a brief
reminder of -h is displayed. When -h is used, write to stdout so
that you can do `python -h | more'.
Notes:
- I don't want to use the -W option to control whether the classic
division warning is issued or not, because the machinery to decide
whether to display the warning or not is very expensive (it involves
calling into the warnings.py module). You can use -Werror to turn
the warnings into exceptions though.
- The -Dnew option doesn't select future division for all of the
program -- only for the __main__ module. I don't know if I'll ever
change this -- it would require changes to the .pyc file magic
number to do it right, and a more global notion of compiler flags.
- You can usefully combine -Dwarn and -Dnew: this gives the __main__
module new division, and warns about classic division everywhere
else.
the old flag to still compile. Remove the PyType_BASICSIZE and
PyType_SET_BASICSIZE macros. Add PyObject_GC_New, PyObject_GC_NewVar,
PyObject_GC_Resize, PyObject_GC_Del, PyObject_GC_Track,
PyObject_GC_UnTrack. Part of SF patch #421893.
pyport.h: typedef a new Py_intptr_t type.
DELICATE ASSUMPTION: That HAVE_UINTPTR_T implies intptr_t is
available as well as uintptr_t. If that turns out not to be
true, things must get uglier (C99 wants both, so I think it's
an assumption we're *likely* to get away with).
thread_nt.h, PyThread_start_new_thread: MS _beginthread is documented
as returning unsigned long; no idea why uintptr_t was being used.
Others: Always use Py_[u]intptr_t, never [u]intptr_t directly.
PyErr_Format() these new C API methods can be used instead of
sprintf()'s into hardcoded char* buffers. This allows us to fix
many situation where long package, module, or class names get
truncated in reprs.
PyString_FromFormat() is the varargs variety.
PyString_FromFormatV() is the va_list variety
Original PyErr_Format() code was modified to allow %p and %ld
expansions.
Many reprs were converted to this, checkins coming soo. Not
changed: complex_repr(), float_repr(), float_print(), float_str(),
int_repr(). There may be other candidates not yet converted.
Closes patch #454743.
CO_FUTURE_DIVISION flag. Redid this to use Jeremy's PyCF_MASK #define
instead, so we dont have to remember to fiddle individual feature names
here again.
pythonrun.h: Also #define a PyCF_MASK_OBSOLETE mask. This isn't used
yet, but will be as part of the PEP 264 implementation (compile() mustn't
raise an error just because old code uses a flag name that's become
obsolete; a warning may be appropriate, but not an error; so compile() has
to know about obsolete flags too, but nobody is going to remember to
update compile() with individual obsolete flag names across releases either
-- i.e., this is the flip side of PyEval_MergeCompilerFlags's oversight).
- Do not compile unicodeobject, unicodectype, and unicodedata if Unicode is disabled
- check for Py_USING_UNICODE in all places that use Unicode functions
- disables unicode literals, and the builtin functions
- add the types.StringTypes list
- remove Unicode literals from most tests.
The descr changes moved the dispatch for calling objects from
call_object() in ceval.c to PyObject_Call() in abstract.c.
call_object() and the many functions it used in ceval.c were no longer
used, but were not removed.
Rename meth_call() as PyCFunction_Call() so that it can be called by
the CALL_FUNCTION opcode in ceval.c.
Also, fix error message that referred to PyEval_EvalCodeEx() by its
old name eval_code2(). (I'll probably refer to it by its old name,
too.)
Replace individual slots in PyFutureFeatures with a single bitmask
with one field per feature. The flags for this bitmask are the same
as the flags used in the co_flags slot of a code object.
XXX This means we waste several bits, because they are used
for co_flags but have no meaning for future statements. Don't
think this is an issue.
Remove the NESTED_SCOPES_DEFAULT define and others. Not sure what
they were for anyway.
Remove all the PyCF_xxx flags, but define PyCF_MASK in terms of the
CO_xxx flags that are relevant for this release.
Change definition of PyCompilerFlags so that cf_flags matches
co_flags.
Removed all instances of Py_UCS2 from the codebase, and so also (I hope)
the last remaining reliance on the platform having an integral type
with exactly 16 bits.
PyUnicode_DecodeUTF16() and PyUnicode_EncodeUTF16() now read and write
one byte at a time.
with functionality needed for both unix-Python and MacPython and a
new smaller ./Mac/Python/macglue.c which contains MacPython stuff only.
pymactoolbox.h has moved to ./Include from ./Mac/Include and now also
contains the relevant stuff from macglue.h.
The net effect of this is that the ./Mac subdirectory is not needed
anymore for building the unix-Python core on MacOSX (it is needed
for building the extension modules).
This introduces:
- A new operator // that means floor division (the kind of division
where 1/2 is 0).
- The "future division" statement ("from __future__ import division)
which changes the meaning of the / operator to implement "true
division" (where 1/2 is 0.5).
- New overloadable operators __truediv__ and __floordiv__.
- New slots in the PyNumberMethods struct for true and floor division,
new abstract APIs for them, new opcodes, and so on.
I emphasize that without the future division statement, the semantics
of / will remain unchanged until Python 3.0.
Not yet implemented are warnings (default off) when / is used with int
or long arguments.
This has been on display since 7/31 as SF patch #443474.
Flames to /dev/null.
- Add an explicit call to PyType_Ready(&PyList_Type) to pythonrun.c
(just for the heck of it, really -- we should either explicitly
ready all types, or none).
Python warning which can be catched by means of the Python warning
framework.
It also adds two new APIs which hopefully make it easier for Python
to switch to buffer overflow safe [v]snprintf() APIs for error
reporting et al. The two new APIs are PyOS_snprintf() and
PyOS_vsnprintf() and work just like the standard ones in many
C libs. On platforms which have snprintf(), the native APIs are used,
on all other an emulation with snprintf() tries to do its best.
And remove all the extern decls in the middle of .c files.
Apparently, it was excluded from the header file because it is
intended for internal use by the interpreter. It's still intended for
internal use and documented as such in the header file.
that 'yield' is a keyword. This doesn't help test_generators at all! I
don't know why not. These things do work now (and didn't before this
patch):
1. "from __future__ import generators" now works in a native shell.
2. Similarly "python -i xxx.py" now has generators enabled in the
shell if xxx.py had them enabled.
3. This program (which was my doctest proxy) works fine:
from __future__ import generators
source = """\
def f():
yield 1
"""
exec compile(source, "", "single") in globals()
print type(f())
that info to code dynamically compiled *by* code compiled with generators
enabled. Doesn't yet work because there's still no way to tell the parser
that "yield" is OK (unlike nested_scopes, the parser has its fingers in
this too).
Replaced PyEval_GetNestedScopes by a more-general
PyEval_MergeCompilerFlags. Perhaps I should not have? I doubted it was
*intended* to be part of the public API, so just did.
the yield statement. I figure we have to have this in before I can
release 2.2a1 on Wednesday.
Note: test_generators is currently broken, I'm counting on Tim to fix
this.
Although this is a one-character change, more work needs to be done:
the compiler can get rid of a lot of non-nested-scopes code, the
documentation needs to be updated, the future statement can be
simplified, etc.
But this change enables the nested scope semantics everywhere, and
that's the important part -- we can now test code for compatibility
with nested scopes by default.
path (with no profile/trace function) through eval_code2() and
eval_frame() avoids several checks.
In the common cases of calls, returns, and exception propogation,
eval_code2() and eval_frame() used to test two values in the
thread-state: the profiling function and the tracing function. With
this change, a flag is set in the thread-state if either of these is
active, allowing a single check to suffice when both are NULL. This
also simplifies the code needed when either function is in use but is
already active (to avoid profiling/tracing the profiler/tracer); the
flag is set to 0 when the profile/trace code is entered, allowing the
same check to suffice for "already in the tracer" for call/return/
exception events.
Python interpreter.
This change adds two new C-level APIs: PyEval_SetProfile() and
PyEval_SetTrace(). These can be used to install profile and trace
functions implemented in C, which can operate at much higher speeds
than Python-based functions. The overhead for calling a C-based
profile function is a very small fraction of a percent of the overhead
involved in calling a Python-based function.
The machinery required to call a Python-based profile or trace
function been moved to sysmodule.c, where sys.setprofile() and
sys.setprofile() simply become users of the new interface.
Implement sys.maxunicode.
Explicitly wrap around upper/lower computations for wide Py_UNICODE.
When decoding large characters with UTF-8, represent expected test
results using the \U notation.
Add configure option --enable-unicode.
Add config.h macros Py_USING_UNICODE, PY_UNICODE_TYPE, Py_UNICODE_SIZE,
SIZEOF_WCHAR_T.
Define Py_UCS2.
Encode and decode large UTF-8 characters into single Py_UNICODE values
for wide Unicode types; likewise for UTF-16.
Remove test whether sizeof Py_UNICODE is two.
unicodeobject.h, which forces sizeof(Py_UNICODE) == sizeof(Py_UCS4).
(this may be good enough for platforms that doesn't have a 16-bit
type. the UTF-16 codecs don't work, though)
the next free valuestack slot, not to the base (in America, stacks push
and pop at the top -- they mutate at the bottom in Australia <winK>).
eval_frame(): assert that f_stacktop isn't NULL upon entry.
frame_delloc(): avoid ordered pointer comparisons involving f_stacktop
when f_stacktop is NULL.
Gave Python linear-time repr() implementations for dicts, lists, strings.
This means, e.g., that repr(range(50000)) is no longer 50x slower than
pprint.pprint() in 2.2 <wink>.
I don't consider this a bugfix candidate, as it's a performance boost.
Added _PyString_Join() to the internal string API. If we want that in the
public API, fine, but then it requires runtime error checks instead of
asserts.
_PyLong_FromByteArray
_PyLong_AsByteArray
Untested and probably buggy -- they compile OK, but nothing calls them
yet. Will soon be called by the struct module, to implement x-platform
'q' and 'Q'.
If other people have uses for them, we could move them into the public API.
See longobject.h for usage details.
UTF-16 codec will now interpret and remove a *leading* BOM mark. Sub-
sequent BOM characters are no longer interpreted and removed.
UTF-16-LE and -BE pass through all BOM mark characters.
These changes should get the UTF-16 codec more in line with what
the Unicode FAQ recommends w/r to BOM marks.
and introduces a new method .decode().
The major change is that strg.encode() will no longer try to convert
Unicode returns from the codec into a string, but instead pass along
the Unicode object as-is. The same is now true for all other codec
return types. The underlying C APIs were changed accordingly.
Note that even though this does have the potential of breaking
existing code, the chances are low since conversion from Unicode
previously took place using the default encoding which is normally
set to ASCII rendering this auto-conversion mechanism useless for
most Unicode encodings.
The good news is that you can now use .encode() and .decode() with
much greater ease and that the door was opened for better accessibility
of the builtin codecs.
As demonstration of the new feature, the patch includes a few new
codecs which allow string to string encoding and decoding (rot13,
hex, zip, uu, base64).
Written by Marc-Andre Lemburg. Copyright assigned to the PSF.
Store floats and doubles to full precision in marshal.
Test that floats read from .pyc/.pyo closely match those read from .py.
Declare PyFloat_AsString() in floatobject header file.
Add new PyFloat_AsReprString() API function.
Document the functions declared in floatobject.h.