Highlights:
- Adding PyObject_Format.
- Adding string.Format class.
- Adding __format__ for str, unicode, int, long, float, datetime.
- Adding builtin format.
- Adding ''.format and u''.format.
- str/unicode fixups for formatters.
The files in Objects/stringlib that implement PEP 3101 (stringdefs.h,
unicodedefs.h, formatter.h, string_format.h) are identical in trunk
and py3k. Any changes from here on should be made to trunk, and
changes will propogate to py3k).
_PyLong_Format. In longobject.c, changed long_format to
_PyLong_Format. In intobject.c, changed uses of PyOS_snprintf to
_PyInt_Format instead.
_PyLong_Format is similar to py3k's routine of the same name, except
it has 2 additional parameters: addL and newstyle. addL was existing
in long_format, and controls adding the trailing "L". This is
unneeded in py3k. newstyle is used to control whether octal prepends
"0" (the pre-2.6 style), or "0o" (the 3.0 sytle).
PyNumber_ToBase is needed for PEP 3127 (Integer Literal Support and
Syntax) and PEP 3101 (Advanced String Formatting).
This changeset does not need merging into py3k.
I implemented the function sys._compact_freelists() and C API functions PyInt_/PyFloat_CompactFreeList() to compact the pre-allocated blocks of ints and floats. They allow the user to reduce the memory usage of a Python process that deals with lots of numbers.
The patch also renames sys._cleartypecache to sys._clear_type_cache
round included:
* Revert round to its 2.6 behavior (half away from 0).
* Because round, floor, and ceil always return float again, it's no
longer necessary to have them delegate to __xxx___, so I've ripped
that out of their implementations and the Real ABC. This also helps
in implementing types that work in both 2.6 and 3.0: you return int
from the __xxx__ methods, and let it get enabled by the version
upgrade.
* Make pow(-1, .5) raise a ValueError again.
the complex_pow part), r56649, r56652, r56715, r57296, r57302, r57359, r57361,
r57372, r57738, r57739, r58017, r58039, r58040, and r59390, and new
documentation. The only significant difference is that round(x) returns a float
to preserve backward-compatibility. See http://bugs.python.org/issue1689.
- Reenable modules on x64 that had been disabled aeons ago for Itanium.
- Cleared up confusion about compilers for 64 bit windows. There is only Itanium and x64. Added macros MS_WINI64 and MS_WINX64 for those rare cases where it matters, such as the disabling of modules above.
- Set target platform (_WIN32_WINNT and WINVER) to 0x0501 (XP) for x64, and 0x0400 (NT 4.0) otherwise, which are the targeted minimum platforms.
- Fixed thread_nt.h. The emulated InterlockedCompareExchange function didn´t work on x64, probaby due to the lack of a "volatile" specifier. Anyway, win95 is no longer a target platform.
- Itertools module used wrong constant to check for overflow in count()
- PyInt_AsSsize_t couldn't deal with attribute error when accessing the __long__ member.
- PyLong_FromSsize_t() incorrectly specified that the operand were unsigned.
With these changes, the x64 passes the testsuite, for those modules present.
of some of the common builtin types.
Use a bit in tp_flags for each common builtin type. Check the bit
to determine if any instance is a subclass of these common types.
The check avoids a function call and O(n) search of the base classes.
The check is done in the various Py*_Check macros rather than calling
PyType_IsSubtype().
All the bits are set in tp_flags when the type is declared
in the Objects/*object.c files because PyType_Ready() is not called
for all the types. Should PyType_Ready() be called for all types?
If so and the change is made, the changes to the Objects/*object.c files
can be reverted (remove setting the tp_flags). Objects/typeobject.c
would also have to be modified to add conditions
for Py*_CheckExact() in addition to each the PyType_IsSubtype check.
* unified the way intobject, longobject and mystrtoul handle
values around -sys.maxint-1.
* in general, trying to entierely avoid overflows in any computation
involving signed ints or longs is extremely involved. Fixed a few
simple cases where a compiler might be too clever (but that's all
guesswork).
* more overflow checks against bad data in marshal.c.
* 2.5 specific: fixed a number of places that were still confusing int
and Py_ssize_t. Some of them could potentially have caused
"real-world" breakage.
* list.pop(x): fixing overflow issues on x was messy. I just reverted
to PyArg_ParseTuple("n"), which does the right thing. (An obscure
test was trying to give a Decimal to list.pop()... doesn't make
sense any more IMHO)
* trying to write a few tests...
i_divmod(): As discussed on Python-Dev, changed the overflow
checking to live happily with recent gcc optimizations that
assume signed integer arithmetic never overflows.
This differs from the corresponding change on the 2.5 and 2.4
branches, using a less obscure approach, but one that /may/
tickle platform idiocies in their definitions of LONG_MIN.
The 2.4 + 2.5 change avoided introducing a dependence on
LONG_MIN, at the cost of substantially goofier code.
I modified this patch some by fixing style, some error checking, and adding
XXX comments. This patch requires review and some changes are to be expected.
I'm checking in now to get the greatest possible review and establish a
baseline for moving forward. I don't want this to hold up release if possible.
to avoid confusing situations like:
>>> int("")
ValueError: invalid literal for int():
>>> int("2\n\n2")
ValueError: invalid literal for int(): 2
2
Also report the base used, to avoid:
ValueError: invalid literal for int(): 2
They now report:
>>> int("")
ValueError: invalid literal for int() with base 10: ''
>>> int("2\n\n2")
ValueError: invalid literal for int() with base 10: '2\n\n2'
>>> int("2", 2)
ValueError: invalid literal for int() with base 2: '2'
(Reporting the base could be avoided when base is 10, which is the default,
but hrm.) Another effect of these changes is that the errormessage can be
longer; before, it was cut off at about 250 characters. Now, it can be up to
four times as long, as the unrepr'ed string is cut off at 200 characters,
instead.
No tests were added or changed, since testing for exact errormsgs is (pardon
the pun) somewhat errorprone, and I consider not testing the exact text
preferable. The actually changed code is tested frequent enough in the
test_builtin test as it is (120 runs for each of ints and longs.)
PyTypeObject structures, I had to make prototypes for the functions, and
move the structure definition ahead of the functions. I'd dearly like a better
way to do this - to change this would make for a massive set of changes to
the codebase.
There's still some warnings - this is purely to get rid of errors first.
In C++, it's an error to pass a string literal to a char* function
without a const_cast(). Rather than require every C++ extension
module to put a cast around string literals, fix the API to state the
const-ness.
I focused on parts of the API where people usually pass literals:
PyArg_ParseTuple() and friends, Py_BuildValue(), PyMethodDef, the type
slots, etc. Predictably, there were a large set of functions that
needed to be fixed as a result of these changes. The most pervasive
change was to make the keyword args list passed to
PyArg_ParseTupleAndKewords() to be a const char *kwlist[].
One cast was required as a result of the changes: A type object
mallocs the memory for its tp_doc slot and later frees it.
PyTypeObject says that tp_doc is const char *; but if the type was
created by type_new(), we know it is safe to cast to char *.
conversion using the proper magic slot (e.g., __int__()). Also move conversion
code out of PyNumber_*() functions in the C API into the nb_* function.
Applied patch #1109424. Thanks Walter Doewald.
happen in 2.3, but nobody noticed it still was getting generated (the
warning was disabled by default). OverflowWarning and
PyExc_OverflowWarning should be removed for 2.5, and left notes all over
saying so.
__oct__, and __hex__. Raise TypeError if an invalid type is
returned. Note that PyNumber_Int and PyNumber_Long can still
return ints or longs. Fixes SF bug #966618.
and left shifts. (Thanks to Kalle Svensson for SF patch 849227.)
This addresses most of the remaining semantic changes promised by
PEP 237, except for repr() of a long, which still shows the trailing
'L'. The PEP appears to promise warnings for operations that
changed semantics compared to Python 2.3, but this is not
implemented; we've suffered through enough warnings related to
hex/oct literals and I think it's best to be silent now.
Now test_descr only appears to leak two references & I think this
are in fact illusory (it's to do with things getting resurrected in
__del__ methods & it's easy to be believe confusion occurs when that
happens <wink>). Woohoo!
New functions:
unsigned long PyInt_AsUnsignedLongMask(PyObject *);
unsigned PY_LONG_LONG) PyInt_AsUnsignedLongLongMask(PyObject *);
unsigned long PyLong_AsUnsignedLongMask(PyObject *);
unsigned PY_LONG_LONG) PyLong_AsUnsignedLongLongMask(PyObject *);
New and changed format codes:
b unsigned char 0..UCHAR_MAX
B unsigned char none **
h unsigned short 0..USHRT_MAX
H unsigned short none **
i int INT_MIN..INT_MAX
I * unsigned int 0..UINT_MAX
l long LONG_MIN..LONG_MAX
k * unsigned long none
L long long LLONG_MIN..LLONG_MAX
K * unsigned long long none
Notes:
* New format codes.
** Changed from previous "range-and-a-half" to "none"; the
range-and-a-half checking wasn't particularly useful.
New test test_getargs2.py, to verify all this.
the PyInt_AsLong function, and this returns a long, the value is first
retrieved with PyLong_AsLong, but afterwards overwritten by a call to
PyInt_AS_LONG.
Fixes SF #690253.
folded; this will change in Python 2.4. On a 32-bit machine, this
happens for 0x80000000 through 0xffffffff, and for octal constants in
the same value range. No warning is issued if an explicit base is
given, *or* if the string contains a sign (since in those cases no
sign folding ever happens).
types. The special handling for these can now be removed from save_newobj().
Add some testing for this.
Also add support for setting the 'fast' flag on the Python Pickler class,
which suppresses use of the memo.