http://python.sourceforge.net/peps/pep-0235.html
Renamed check_case to case_ok. Substantial code rearrangement to get
this stuff in one place in the file. Innermost loop of find_module()
now much simpler and #ifdef-free, and I want to keep it that way (it's
bad enough that the innermost loop is itself still in an #ifdef!).
Windows semantics tested and are fine.
Jason, Cygwin *should* be fine if and only if what you did before "worked"
for case_ok.
Jack, the semantics on your flavor of Mac have definitely changed (see
the PEP), and need to be tested. The intent is that your flavor of Mac
now work the same as everything else in the "lower left" box, including
respecting PYTHONCASEOK.
Steven, sorry, you did the most work here so far but you got screwed the
worst. Happy to work with you on repairing it, but I don't understand
anything about all your Mac variants. We need to add another branch (or
two, three, ...?) inside case_ok. But we should not need to change
anything else.
XXX still need to integrate into symtable API
compile.h: Remove ff_n_simple_stmt; obsolete.
Add ff_found_docstring used internally to skip one and only
one string at the beginning of a module.
compile.c: Add check for from __future__ imports to far into the file.
In symtable_global() check for -1 returned from
symtable_lookup(), which signifies name not defined.
Add missing DECERF in symtable_add_def.
Free c->c_future.
future.c: Add special handling for multiple statements joined on a
single line using one or more semicolons; this form can
include an illegal future statement that would otherwise be
hard to detect.
Add support for detecting and skipping doc strings.
Makefile.pre.in: add target future.o
Include/compile.h: define PyFutureFeaters and PyNode_Future()
add c_future slot to struct compiling
Include/symtable.h: add st_future slot to struct symtable
Python/future.c: implementation of PyNode_Future()
Python/compile.c: use PyNode_Future() for nested_scopes support
Python/symtable.c: include compile.h to pick up PyFutureFeatures decl
compile.h: #define NESTED_SCOPES_DEFAULT 0 for Python 2.1
__future__ feature name: "nested_scopes"
symtable.h: Add st_nested_scopes slot. Define flags to track exec and
import star.
Lib/test/test_scope.py: requires nested scopes
compile.c: Fiddle with error messages.
Reverse the sense of ste_optimized flag on
PySymtableEntryObjects. If it is true, there is an optimization
conflict.
Modify get_ref_type to respect st_nested_scopes flags.
Refactor symtable_load_symbols() into several smaller functions,
which use struct symbol_info to share variables. In new function
symtable_update_flags(), raise an error or warning for import * or
bare exec that conflicts with nested scopes. Also, modify handle
for free variables to respect st_nested_scopes flag.
In symtable_init() assign st_nested_scopes flag to
NESTED_SCOPES_DEFAULT (defined in compile.h).
Add preliminary and often incorrect implementation of
symtable_check_future().
Add symtable_lookup() helper for future use.
Two different but related problems:
1. PySymtable_Free() must explicitly DECREF(st->st_cur), which should
always point to the global symtable entry. This entry is setup by the
first enter_scope() call, but there is never a corresponding
exit_scope() call.
Since each entry has a reference to scopes defined within it, the
missing DECREF caused all symtable entries to be leaked.
2. The leak here masked a separate problem with
PySymtableEntry_New(). When the requested entry was found in
st->st_symbols, the entry was returned without doing an INCREF.
And problem c) The ste_children slot was getting two copies of each
child entry, because it was populating the slot on the first and
second passes. Now only populate on the first pass.
save the __builtin__ module in a static variable. But this doesn't
work across Py_Finalise()/Py_Initialize()! It also doesn't work when
using multiple interpreter states created with PyInterpreterState_New().
So I'm ripping out this small optimization.
This was probably broken since PyImport_Import() was introduced in
1997! We really need a better test suite for multiple interpreter
states and repeatedly initializing.
This fixes the problems Barry reported in Demo/embed/loop.c.
the symbol table pass. These blocks were already ignored by the code
gen pass. Both passes must visit the same set of blocks in the same
order.
Fixes SF buf 132820
They're actually complaining about something more specific, an assignment
in a lambda as an actual argument, so that Python parses the
lambda as if it were a keyword argument. Like f(lambda x: x[0]=42).
The "lambda x: x[0]" part gets parsed as if it were a keyword, being
bound to 42, and the resulting error msg didn't make much sense.
_testcapimodule.c
make sure PyList_Reverse doesn't blow up again
getargs.c
assert args isn't NULL at the top of vgetargs1 instead of
waiting for a NULL-pointer dereference at the end
Bug was introduced by tricks played to make .pyc files executable
via cmdline arg. Then again, -x worked via a trick to begin with.
If anyone can think of a portable way to test -x, be my guest!
create an empty dictionary if it is called without keyword args. Just
pass NULL.
XXX I had believed that this caused weird errors, but the test suite
runs cleanly.
of nested functions. Either is allowed in a function if it contains
no defs or lambdas or the defs and lambdas it contains have no free
variables. If a function is itself nested and has free variables,
either is illegal.
Revise the symtable to use a PySymtableEntryObject, which holds all
the revelent information for a scope, rather than using a bunch of
st_cur_XXX pointers in the symtable struct. The changes simplify the
internal management of the current symtable scope and of the stack.
Added new C source file: Python/symtable.c. (Does the Windows build
process need to be updated?)
As part of these changes, the initial _symtable module interface
introduced in 2.1a2 is replaced. A dictionary of
PySymtableEntryObjects are returned.
hooks to take over the Python import machinery at a very early stage
in the Python startup phase.
If there are still places in the Python interpreter which need to
bypass the __import__ hook, these places must now use
PyImport_ImportModuleEx() instead. So far no other places than in
the import mechanism itself have been identified.
symtable.h, so that they can be used by external module.
Improve error handling in symtable_enter_scope(), which return an
error code that went unchecked by most callers. XXX The error handling
in symtable code is sloppy in general.
Modify symtable to record the line number that begins each scope.
This can help to identify which code block is being referred to when
multiple blocks are bound to the same name.
Add st_scopes dict that is used to preserve scope info when
PyNode_CompileSymtable() is called. Otherwise, this information is
tossed as soon as it is no longer needed.
Add Py_SymtableString() to pythonrun; analogous to Py_CompileString().
discussion on python-dev. 'from mod import *' is still banned except
at the module level.
Fix value for special NOOPT entry in symtable. Initialze to 0 instead
of None, so that later uses of PyInt_AS_LONG() are valid. (Bug
reported by Donn Cave.)
replace local REPR macros with PyObject_REPR in object.h
reference manual but not checked: Names bound by import statemants may
not occur in global statements in the same scope. The from ... import *
form may only occur in a module scope.
I guess these changes could break code, but the reference manual
warned about them.
Several other small changes
If a variable is declared global in the nearest enclosing scope of a
free variable, then treat it is a global in the nested scope too.
Get rid of com_mangle and symtable_mangle functions and call mangle
directly.
If errors occur during symtable table creation, return -1 from
symtable_build().
Do not increment st_errors in assignment to lambda, because exception
is not set.
Add extra argument to symtable_assign(); the argument, flag, is ORed
with DEF_LOCAL for each symtable_add_def() call.
This change eliminates an extra malloc/free when a frame with free
variables is created. Any cell vars or free vars are stored in
f_localsplus after the locals and before the stack.
eval_code2() fills in the appropriate values after handling
initialization of locals.
To track the size the frame has an f_size member that tracks the total
size of f_localsplus. It used to be implicitly f_nlocals + f_stacksize.
They're named as if public, so I did a Bad Thing by changing
PyMarshal_ReadObjectFromFile() to suck up the remainder of the file in one
gulp: anyone who counted on that leaving the file pointer merely at the
end of the next object would be screwed. So restored
PyMarshal_ReadObjectFromFile() to its earlier state, renamed the new greedy
code to PyMarshal_ReadLastObjectFromFile(), and changed Python internals to
call the latter instead.
SF patch http://sourceforge.net/patch/?func=detailpatch&patch_id=103453&group_id=5470
PyMember_Set of T_CHAR always raises exception.
Unfortunately, this is a use of a C API function that Python itself never makes, so
there's no .py test I can check in to verify this stays fixed. But the fault in the
code is obvious, and Dave Cole's patch just as obviously fixes it.
The majority of the changes are in the compiler. The mainloop changes
primarily to implement the new opcodes and to pass a function's
closure to eval_code2(). Frames and functions got new slots to hold
the closure.
Include/compile.h
Add co_freevars and co_cellvars slots to code objects.
Update PyCode_New() to take freevars and cellvars as arguments
Include/funcobject.h
Add func_closure slot to function objects.
Add GetClosure()/SetClosure() functions (and corresponding
macros) for getting at the closure.
Include/frameobject.h
PyFrame_New() now takes a closure.
Include/opcode.h
Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF,
STORE_DEREF.
Remove comment about old requirement for opcodes to fit in 7
bits.
compile.c
Implement changes to code objects for co_freevars and co_cellvars.
Modify symbol table to use st_cur_name (string object for the name
of the current scope) and st_cur_children (list of nested blocks).
Also define st_nested, which might more properly be called
st_cur_nested. Add several DEF_XXX flags to track def-use
information for free variables.
New or modified functions of note:
com_make_closure(struct compiling *, PyCodeObject *)
Emit LOAD_CLOSURE opcodes as needed to pass cells for free
variables into nested scope.
com_addop_varname(struct compiling *, int, char *)
Emits opcodes for LOAD_DEREF and STORE_DEREF.
get_ref_type(struct compiling *, char *name)
Return NAME_CLOSURE if ref type is FREE or CELL
symtable_load_symbols(struct compiling *)
Decides what variables are cell or free based on def-use info.
Can now raise SyntaxError if nested scopes are mixed with
exec or from blah import *.
make_scope_info(PyObject *, PyObject *, int, int)
Helper functions for symtable scope stack.
symtable_update_free_vars(struct symtable *)
After a code block has been analyzed, it must check each of
its children for free variables that are not defined in the
block. If a variable is free in a child and not defined in
the parent, then it is defined by block the enclosing the
current one or it is a global. This does the right logic.
symtable_add_use() is now a macro for symtable_add_def()
symtable_assign(struct symtable *, node *)
Use goto instead of for (;;)
Fixed bug in symtable where name of keyword argument in function
call was treated as assignment in the scope of the call site. Ex:
def f():
g(a=2) # a was considered a local of f
ceval.c
eval_code2() now take one more argument, a closure.
Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE>
Also: When name error occurs for global variable, report that the
name was global in the error mesage.
Objects/frameobject.c
Initialize f_closure to be a tuple containing space for cellvars
and freevars. f_closure is NULL if neither are present.
Objects/funcobject.c
Add support for func_closure.
Python/import.c
Change the magic number.
Python/marshal.c
Track changes to code objects.
parameters that contained both anonymous tuples and *arg or **arg. Ex:
def f(a, (b, c), *d): pass
Fix the symtable_params() to generate names in the right order for
co_varnames slot of code object. Consider *arg and **arg before the
"complex" names introduced by anonymous tuples.
module__doc__: Document the Warning subclass heirarchy.
make_class(): Added a "goto finally" so that if populate_methods()
fails, the return status will be -1 (failure) instead of 0 (success).
fini_exceptions(): When decref'ing the static pointers to the
exception classes, clear out their dictionaries too. This breaks a
cycle from class->dict->method->class and allows the classes with
unbound methods to be reclaimed. This plugs a large memory leak in a
common Py_Initialize()/dosomething/Py_Finalize() loop.
pythonrun.c: In Py_Finalize, don't reset the initialized flag until after
the exit funcs have run.
atexit.py: in _run_exitfuncs, mutate the list of pending calls in a
threadsafe way. This wasn't a contributor to bug 128475, it just burned
my eyeballs when looking at that bug.
symbol table for each top-level compilation unit. The information in
the symbol table allows the elimination of the later optimize() pass;
the bytecode generation emits the correct opcodes.
The current version passes the complete regression test, but may still
contain some bugs. It's a fairly substantial revision. The current
code adds an assert() and a test that may lead to a Py_FatalError().
I expect to remove these before 2.1 beta 1.
The symbol table (struct symtable) is described in comments in the
code.
The changes affects the several com_XXX() functions that were used to
emit LOAD_NAME and its ilk. The primary interface for this bytecode
is now com_addop_varname() which takes a kind and a name, where kind
is one of VAR_LOAD, VAR_STORE, or VAR_DELETE.
There are many other smaller changes:
- The name mangling code is no longer contained in ifdefs. There are
two functions that expose the mangling logical: com_mangle() and
symtable_mangle().
- The com_error() function can accept NULL for its first argument;
this is useful with is_constant_false() is called during symbol
table generation.
- The loop index names used by list comprehensions have been changed
from __1__ to [1], so that they can not be accessed by Python code.
- in com_funcdef(), com_argdefs() is now called before the body of the
function is compiled. This provides consistency with com_lambdef()
and symtable_funcdef().
- Helpers do_pad(), dump(), and DUMP() are added to aid in debugging
the compiler.
except that it always returns Unicode objects.
A new C API PyObject_Unicode() is also provided.
This closes patch #101664.
Written by Marc-Andre Lemburg. Copyright assigned to Guido van Rossum.
- Use PyObject_RichCompare*() where possible: when comparing
keyword arguments, in _PyEval_SliceIndex(), and of course in
cmp_outcome().
Unrelated stuff:
- Removed all trailing whitespace.
- Folded some long lines.
message, and tries to make the messages more consistent and helpful when
the wrong number of arguments or duplicate keyword arguments are supplied.
Comes with more tests for test_extcall.py and and an update to an error
message in test/output/test_pyexpat.
re-initializing Python (Py_Finalize() followed by Py_Initialize()) to
blow up quickly. With the DECREF removed I can't get it to fail any
more. (Except it still leaks, but that's probably a separate issue.)
1) "from M import X" now works even if M is not a real module; it's
basically a getattr() operation with AttributeError exceptions
changed into ImportError.
2) "from M import *" now looks for M.__all__ to decide which names to
import; if M.__all__ doesn't exist, it uses M.__dict__.keys() but
filters out names starting with '_' as before. Whether or not
__all__ exists, there's no restriction on the type of M.
- Make error messages from issubclass() and isinstance() a bit more
descriptive (Ping, modified by Guido)
- Couple of tiny fixes to other docstrings (Ping)
- Get rid of trailing whitespace (Guido)
Cygwin Python DLL and Shared Extension Patch). Add module.dll as a
valid extension.
jlt63 writes: Note that his change essentially backs out the fix for
bug #115973. Should ".pyd" be retained instead for posterity?
an empty keywords dictionary (via apply() or the extended call syntax),
the keywords dict should be ignored. If the keywords dict is not empty,
TypeError should be raised. (Between the restructuring of the call
machinery and this patch, an empty dict in this situation would trigger
a SystemError via PyErr_BadInternalCall().)
Added regression tests to detect errors for this.
More revision still needed.
Much of the code that was in the mainloop was moved to a series of
helper functions. PyEval_CallObjectWithKeywords was split into two
parts. The first part now only does argument handling. The second
part is now named call_object and delegates the call to a
call_(function,method,etc.) helper.
XXX The call_XXX helper functions should be replaced with tp_call
functions for the respective types.
The CALL_FUNCTION implementation contains three kinds of optimization:
1. fast_cfunction and fast_function are called when the arguments on
the stack can be passed directly to eval_code2() without copying
them into a tuple.
2. PyCFunction objects are dispatched immediately, because they are
presumed to occur more often than anything else.
3. Bound methods are dispatched inline. The method object contains a
pointer to the function object that will be called. The function
is called from within the mainloop, which may allow optimization #1
to be used, too.
The extened call implementation -- f(*args) and f(**kw) -- are
implemented as a separate case in the mainloop. This allows the
common case of normal function calls to execute without wasting time
on checks for extended calls, although it does introduce a small
amount of code duplication.
Also, the unused final argument of eval_code2() was removed. This is
probably the last trace of the access statement :-).
"..." in "from M import ..." was never DECREFed. Leak reported by
James Slaughter and nailed by Barry, who also provided an earlier
version of this patch.
the bug report (for details, look at it), but agree there's no need for Python
to declare atof itself: we #include stdlib.h, and ANSI C sez atof is declared
there already.
regardless of whether the system getopt() does what we want. This avoids the
hassle with prototypes and externs, and the check to see if the system
getopt() does what we want. Prefix optind, optarg and opterr with _PyOS_ to
avoid name clashes. Add new include file to define the right symbols. Fix
Demo/pyserv/pyserv.c to include getopt.h itself, instead of relying on
Python to provide it.
When a method is called with no regular arguments and * args, defer
the first arg is subclass check until after the * args have been
expanded.
N.B. The CALL_FUNCTION implementation is getting really hairy; should
review it to see if it can be simplified.