array. Our samplesort special-cases the snot out of this, running about
12x faster than *sort. The experimental mergesort runs it about 8x
faster than *sort without special-casing, but should really do better
than that (when merging runs of different lengths, right now it only
does something clever about finding where the second run begins in
the first and where the first run ends in the second, and that's more
of a temp-memory optimization).
(i.e. email.test), so move the guts of them here from Lib/test. The
latter directory will retain stubs to run the email.test tests using
Python's standard regression test.
test_email_torture.py is a torture tester which will not run under
Python's test suite because I don't want to commit megs of data to
that project (it will fail cleanly there). When run under the mimelib
project it'll stress test the package with megs of message samples
collected from various locations in the wild.
version of PySlice_GetIndicesEx"):
> OK. Michael, if you want to check in indices(), go ahead.
Then I did what was needed, but didn't check it in. Here it is.
the default range to end at 2**20 (machines are much faster now).
Fixed what was quite a arguably a bug, explaining an old mystery: the
"!sort" case here contructs what *was* a quadratic-time disaster for
the old quicksort implementation. But under the current samplesort, it
always ran much faster than *sort (the random case). This never made
sense. Turns out it was because !sort was sorting an integer array,
while all the other cases sort floats; and comparing ints goes much
quicker than comparing floats in Python. After changing !sort to chew
on floats instead, it's now slower than the random sort case, which
makes more sense (but is just a few percent slower; samplesort is
massively less sensitive to "bad patterns" than quicksort).
existed at the time atexit first got imported. That's a bug, and this
fixes it.
Also reworked test_atexit.py to test for this too, and to stop using
an "expected output" file, and to test what actually happens at exit
instead of just simulating what it thinks atexit will do at exit.
Bugfix candidate, but it's messy so I'll backport to 2.2 myself.
The test of httplib makes it difficult to maintain httplib. There are
two many idioms that pyclbr doesn't seem to understand, and I don't
understand how to update these tests to make them work.
Also remove commented out test of urllib2.
takes much longer to run in the context of the test suite than when run in
isolation. That's because it forces a large number of full collections,
which take time proportional to the total number of gc'ed objects in the
whole system.
But since the dangerous implementation trickery that caused this test to
fail in 2.0, 2.1 and 2.2 doesn't exist in 2.3 anymore (the trashcan
mechanism stopped doing evil things when the possibility for compiling
without cyclic gc was taken away), such an expensive test is no longer
justified. This checkin leaves the test intact, but fiddles the
constants to reduce the runtime by about a factor of 5.
debug-build failure when an instance of a new-style class is resurrected
by a __del__ method -- we simply never had any code that tried this.
This is already fixed in 2.3 CVS. In 2.2.1, it blows up via
Fatal Python error: GC object already in linked list
I'll fix it in 2.2.1 CVS next.
.splitlines() on them, since they may be Header instances.
test_multilingual(), test_header_ctor_default_args(): New tests of
make_header() and that Header can take all default arguments.
ndiff function, so just alias it to assertEqual in that case.
Various: make sure all openfile()/read()'s are wrapped in
try/finally's so the file gets closed.
A bunch of new tests checking the corner cases for multipart/digest
and message/rfc822.
If multiple header fields with the same name occur, they are combined
according to the rules in RFC 2616 sec 4.2:
Appending each subsequent field-value to the first, each separated by
a comma. The order in which header fields with the same field-name are
received is significant to the interpretation of the combined field
value.
folding. Note that some of the Japanese tests have changed, but I
don't really know if they are correct or not. :(
Someone with Japanese and RFC 2047 expertise, please take a look!
Setting the buffer_text attribute to true causes the parser to collect
character data, waiting as long as possible to report it to the Python
callback. This can save an enormous number of callbacks from C to
Python, which can be a substantial performance improvement.
buffer_text defaults to false.