[ 1181301 ] make float packing copy bytes when they can
which hasn't been reviewed, despite numerous threats to check it in
anyway if noone reviews it. Please read the diff on the checkin list,
at least!
The basic idea is to examine the bytes of some 'probe values' to see if
the current platform is a IEEE 754-ish platform, and if so
_PyFloat_{Pack,Unpack}{4,8} just copy bytes around.
The rest is hair for testing, and tests.
with an indented code block but no newline would raise SyntaxError.
This would have been a four-line change in parsetok.c... Except
codeop.py depends on this behavior, so a compilation flag had to be
invented that causes the tokenizer to revert to the old behavior;
this required extra changes to 2 .h files, 2 .c files, and 2 .py
files. (Fixes SF bug #501622.)
Initialize the small integers and __builtins__ in startup.
This removes some if conditions.
Change XDECREF to DECREF for values which shouldn't be NULL.
- new import hooks in import.c, exposed in the sys module
- new module called 'zipimport'
- various changes to allow bootstrapping from zip files
I hope I didn't break the Windows build (or anything else for that
matter), but then again, it's been sitting on sf long enough...
Regarding the latest discussions on python-dev: zipimport sets
pkg.__path__ as specified in PEP 273, and likewise, sys.path item such as
/path/to/Archive.zip/subdir/ are supported again.
PEP 238. Changes:
- add a new flag variable Py_DivisionWarningFlag, declared in
pydebug.h, defined in object.c, set in main.c, and used in
{int,long,float,complex}object.c. When this flag is set, the
classic division operator issues a DeprecationWarning message.
- add a new API PyRun_SimpleStringFlags() to match
PyRun_SimpleString(). The main() function calls this so that
commands run with -c can also benefit from -Dnew.
- While I was at it, I changed the usage message in main() somewhat:
alphabetized the options, split it in *four* parts to fit in under
512 bytes (not that I still believe this is necessary -- doc strings
elsewhere are much longer), and perhaps most visibly, don't display
the full list of options on each command line error. Instead, the
full list is only displayed when -h is used, and otherwise a brief
reminder of -h is displayed. When -h is used, write to stdout so
that you can do `python -h | more'.
Notes:
- I don't want to use the -W option to control whether the classic
division warning is issued or not, because the machinery to decide
whether to display the warning or not is very expensive (it involves
calling into the warnings.py module). You can use -Werror to turn
the warnings into exceptions though.
- The -Dnew option doesn't select future division for all of the
program -- only for the __main__ module. I don't know if I'll ever
change this -- it would require changes to the .pyc file magic
number to do it right, and a more global notion of compiler flags.
- You can usefully combine -Dwarn and -Dnew: this gives the __main__
module new division, and warns about classic division everywhere
else.
CO_FUTURE_DIVISION flag. Redid this to use Jeremy's PyCF_MASK #define
instead, so we dont have to remember to fiddle individual feature names
here again.
pythonrun.h: Also #define a PyCF_MASK_OBSOLETE mask. This isn't used
yet, but will be as part of the PEP 264 implementation (compile() mustn't
raise an error just because old code uses a flag name that's become
obsolete; a warning may be appropriate, but not an error; so compile() has
to know about obsolete flags too, but nobody is going to remember to
update compile() with individual obsolete flag names across releases either
-- i.e., this is the flip side of PyEval_MergeCompilerFlags's oversight).
Replace individual slots in PyFutureFeatures with a single bitmask
with one field per feature. The flags for this bitmask are the same
as the flags used in the co_flags slot of a code object.
XXX This means we waste several bits, because they are used
for co_flags but have no meaning for future statements. Don't
think this is an issue.
Remove the NESTED_SCOPES_DEFAULT define and others. Not sure what
they were for anyway.
Remove all the PyCF_xxx flags, but define PyCF_MASK in terms of the
CO_xxx flags that are relevant for this release.
Change definition of PyCompilerFlags so that cf_flags matches
co_flags.
This introduces:
- A new operator // that means floor division (the kind of division
where 1/2 is 0).
- The "future division" statement ("from __future__ import division)
which changes the meaning of the / operator to implement "true
division" (where 1/2 is 0.5).
- New overloadable operators __truediv__ and __floordiv__.
- New slots in the PyNumberMethods struct for true and floor division,
new abstract APIs for them, new opcodes, and so on.
I emphasize that without the future division statement, the semantics
of / will remain unchanged until Python 3.0.
Not yet implemented are warnings (default off) when / is used with int
or long arguments.
This has been on display since 7/31 as SF patch #443474.
Flames to /dev/null.
that 'yield' is a keyword. This doesn't help test_generators at all! I
don't know why not. These things do work now (and didn't before this
patch):
1. "from __future__ import generators" now works in a native shell.
2. Similarly "python -i xxx.py" now has generators enabled in the
shell if xxx.py had them enabled.
3. This program (which was my doctest proxy) works fine:
from __future__ import generators
source = """\
def f():
yield 1
"""
exec compile(source, "", "single") in globals()
print type(f())
that info to code dynamically compiled *by* code compiled with generators
enabled. Doesn't yet work because there's still no way to tell the parser
that "yield" is OK (unlike nested_scopes, the parser has its fingers in
this too).
Replaced PyEval_GetNestedScopes by a more-general
PyEval_MergeCompilerFlags. Perhaps I should not have? I doubted it was
*intended* to be part of the public API, so just did.
Update docstring and library reference section on 'sys' module.
New API PyErr_Display, just for displaying errors, called by excepthook.
Uncaught exceptions now call sys.excepthook; if that fails, we fall back
to calling PyErr_Display directly.
Also comes with sys.__excepthook__ and sys.__displayhook__.
If a module has a future statement enabling nested scopes, they are
also enable for the exec statement and the functions compile() and
execfile() if they occur in the module.
If Python is run with the -i option, which enters interactive mode
after executing a script, and the script it runs enables nested
scopes, they are also enabled in interactive mode.
XXX The use of -i with -c "from __future__ import nested_scopes" is
not supported. What's the point?
To support these changes, many function variants have been added to
pythonrun.c. All the variants names end with Flags and they take an
extra PyCompilerFlags * argument. It is possible that this complexity
will be eliminated in a future version of the interpreter in which
nested scopes are not optional.
(Also remove warning about module-level global decl, because we can't
distinguish from code passed to exec.)
Define PyCompilerFlags type contains a single element,
cf_nested_scopes, that is true if a nested scopes future statement has
been entered at the interactive prompt.
New API functions:
PyNode_CompileFlags()
PyRun_InteractiveOneFlags()
-- same as their non Flags counterparts except that the take an
optional PyCompilerFlags pointer
compile.c: In jcompile() use PyCompilerFlags argument. If
cf_nested_scopes is true, compile code with nested scopes. If it
is false, but the code has a valid future nested scopes statement,
set it to true.
pythonrun.c: Create a new PyCompilerFlags object in
PyRun_InteractiveLoop() and thread it through to
PyRun_InteractiveOneFlags().
symtable.h, so that they can be used by external module.
Improve error handling in symtable_enter_scope(), which return an
error code that went unchecked by most callers. XXX The error handling
in symtable code is sloppy in general.
Modify symtable to record the line number that begins each scope.
This can help to identify which code block is being referred to when
multiple blocks are bound to the same name.
Add st_scopes dict that is used to preserve scope info when
PyNode_CompileSymtable() is called. Otherwise, this information is
tossed as soon as it is no longer needed.
Add Py_SymtableString() to pythonrun; analogous to Py_CompileString().
PyRun_FileEx(). These are the same as their non-Ex counterparts but
have an extra argument, a flag telling them to close the file when
done.
Then this is used by Py_Main() and execfile() to close the file after
it is parsed but before it is executed.
Adding APIs seems strange given the feature freeze but it's the only
way I see to close the bug report without incompatible changes.
[ Bug #110616 ] source file stays open after parsing is done (PR#209)
or fini of the builtin module.
_PyBuiltin_Init_1 => _PyBuiltin_Init
_PyBuiltin_Init_2 removed
_PyBuiltin_Fini_1 removed
_PyBuiltin_Fini_2 removed
These functions are used to initialize the _exceptions module.
init_exceptions added
fini_exceptions added
embedders to force a different PYTHONHOME.
- Add new interface PyErr_PrintEx(flag); same as PyErr_Print() but
flag determines whether sys.last_* are set or not. PyErr_Print()
now simply calls PyErr_PrintEx(1).
Introduce truly separate (sub)interpreter objects. For now, these
must be used by separate threads, created from C. See Demo/pysvr for
an example of how to use this. This also rationalizes Python's
initialization and finalization behavior:
Py_Initialize() -- initialize the whole interpreter
Py_Finalize() -- finalize the whole interpreter
tstate = Py_NewInterpreter() -- create a new (sub)interpreter
Py_EndInterpreter(tstate) -- delete a new (sub)interpreter
There are also new interfaces relating to threads and the interpreter
lock, which can be used to create new threads, and sometimes have to
be used to manipulate the interpreter lock when creating or deleting
sub-interpreters. These are only defined when WITH_THREAD is defined:
PyEval_AcquireLock() -- acquire the interpreter lock
PyEval_ReleaseLock() -- release the interpreter lock
PyEval_AcquireThread(tstate) -- acquire the lock and make the thread current
PyEval_ReleaseThread(tstate) -- release the lock and make NULL current
Other administrative changes:
- The header file bltinmodule.h is deleted.
- The init functions for Import, Sys and Builtin are now internal and
declared in pythonrun.h.
- Py_Setup() and Py_Cleanup() are no longer declared.
- The interpreter state and thread state structures are now linked
together in a chain (the chain of interpreters is a static variable
in pythonrun.c).
- Some members of the interpreter and thread structures have new,
shorter, more consistent, names.
- Added declarations for _PyImport_{Find,Fixup}Extension() to import.h.
use the new names exclusively, and the linker will see the new names.
Files that import "Python.h" also only see the new names. Files that
import "allobjects.h" will continue to be able to use the old names,
due to the inclusion (in allobjects.h) of "rename2.h".
object.h: made sizes and refcnts signed ints.
stringobject.h: make getstrsize() signed int.
methodobject.h: add METH_VARARGS and METH_FREENAME flag bit definitions.
* Makefile: change location of FORMS library.
* posixmodule.c: turn #if 0 into #ifdef MSDOS (stuff in unistd.h or not)
* Almost all .h files: added CPP magic to avoid duplicate inclusions and
to support inclusion from C++.
Added $(SYSDEF) to its build rule in Makefile.
* cgensupport.[ch], modsupport.[ch]: removed some old stuff. Also
changed files that still used it... And made several things static
that weren't but should have been... And other minor cleanups...
* listobject.[ch]: add external interfaces {set,get}listslice
* socketmodule.c: fix bugs in new send() argument parsing.
* sunaudiodevmodule.c: added flush() and close().
f_fastlocals in a traceback object (this is a core dump hazard
if there are <nil> entries), but instead eval_code() merges the fast
locals back into the locals dictionary if it looks like the local
variables will be retained. Also, the merge routines save
exceptions since this is sometimes needed (alas!).
* Added id() to bltinmodule.c, which returns an object's address
(identity). Useful to walk arbitrary data structures containing
cycles.
* Added compile() to bltinmodule.c and compile_string() to
pythonrun.[ch]: support to exec/eval arbitrary code objects. The
code that defaults globals and locals is moved from run_node in
pythonrun.c (which is now identical to eval_node) to eval_code in
ceval.c. [XXX For elegance a clean-up session is necessary.]
* Stubs for faster implementation of local variables (not yet finished)
* Added function name to code object. Print it for code and function
objects. THIS MAKES THE .PYC FILE FORMAT INCOMPATIBLE (the version
number has changed accordingly)
* Print address of self for built-in methods
* New internal functions getattro and setattro (getattr/setattr with
string object arg)
* Replaced "dictobject" with more powerful "mappingobject"
* New per-type functio tp_hash to implement arbitrary object hashing,
and hashobject() to interface to it
* Added built-in functions hash(v) and hasattr(v, 'name')
* classobject: made some functions static that accidentally weren't;
added __hash__ special instance method to implement hash()
* Added proper comparison for built-in methods and functions