for 'str' and 'unicode', and can be used instead of
types.StringTypes, e.g. to test whether something is "a string":
isinstance(x, string) is True for Unicode and 8-bit strings. This
is an abstract base class and cannot be instantiated directly.
don't understand how this function works, also beefed up the docs. The
most common usage error is of this form (often spread out across gotos):
if (_PyString_Resize(&s, n) < 0) {
Py_DECREF(s);
s = NULL;
goto outtahere;
}
The error is that if _PyString_Resize runs out of memory, it automatically
decrefs the input string object s (which also deallocates it, since its
refcount must be 1 upon entry), and sets s to NULL. So if the "if"
branch ever triggers, it's an error to call Py_DECREF(s): s is already
NULL! A correct way to write the above is the simpler (and intended)
if (_PyString_Resize(&s, n) < 0)
goto outtahere;
Bugfix candidate.
http://www.python.org/sf/444708
This adds the optional argument for str.strip
to unicode.strip too and makes it possible
to call str.strip with a unicode argument
and unicode.strip with a str argument.
Add a method zfill to str, unicode and UserString and change
Lib/string.py accordingly.
This activates the zfill version in unicodeobject.c that was
commented out and implements the same in stringobject.c. It also
adds the test for unicode support in Lib/string.py back in and
uses repr() instead() of str() (as it was before Lib/string.py 1.62)
Add optional arg to string methods strip(), lstrip(), rstrip().
The optional arg specifies characters to delete.
Also for UserString.
Still to do:
- Misc/NEWS
- LaTeX docs (I did the docstrings though)
- Unicode methods, and Unicode support in the string methods.
PEP 285. Everything described in the PEP is here, and there is even
some documentation. I had to fix 12 unit tests; all but one of these
were printing Boolean outcomes that changed from 0/1 to False/True.
(The exception is test_unicode.py, which did a type(x) == type(y)
style comparison. I could've fixed that with a single line using
issubtype(x, type(y)), but instead chose to be explicit about those
places where a bool is expected.
Still to do: perhaps more documentation; change standard library
modules to return False/True from predicates.
Objects/
fileobject.c
stringobject.c
unicodeobject.c
This commit doesn't include the cleanup patches for stringobject.c and
unicodeobject.c which are shown separately in the patch manager. Those
patches will be regenerated and applied in a subsequent commit, so as
to preserve a fallback position (this commit to those files).
PyString_FromString():
Since the length of the string is already being stored in size,
changed the strcpy() to a memcpy() for a small speed improvement.
Add a missing DECREF in an obscure corner. If the str() or repr() of
an object passed to a string interpolation -- e.g. "%s" % obj --
returns a non-string, the returned object was leaked.
Repair an indentation glitch.
Replace a bunch of PyString_AsString() calls (and their ilk) with
macros.
response to a message by Laura Creighton on c.l.py. E.g.
>>> 0+''
TypeError: unsupported operand types for +: 'int' and 'str'
(previously this did not mention the operand types)
>>> ''+0
TypeError: cannot concatenate 'str' and 'int' objects
object.c, PyObject_Str: Don't try to optimize anything except exact
string objects here; in particular, let str subclasses go thru tp_str,
same as non-str objects. This allows overrides of tp_str to take
effect.
stringobject.c:
+ string_print (str's tp_print): If the argument isn't an exact string
object, get one from PyObject_Str.
+ string_str (str's tp_str): Make a genuine-string copy of the object if
it's of a proper str subclass type. str() applied to a str subclass
that doesn't override __str__ ends up here.
test_descr.py: New str_of_str_subclass() test.
many types were subclassable but had a xxx_dealloc function that
called PyObject_DEL(self) directly instead of deferring to
self->ob_type->tp_free(self). It is permissible to set tp_free in the
type object directly to _PyObject_Del, for non-GC types, or to
_PyObject_GC_Del, for GC types. Still, PyObject_DEL was a tad faster,
so I'm fearing that our pystone rating is going down again. I'm not
sure if doing something like
void xxx_dealloc(PyObject *self)
{
if (PyXxxCheckExact(self))
PyObject_DEL(self);
else
self->ob_type->tp_free(self);
}
is any faster than always calling the else branch, so I haven't
attempted that -- however those types whose own dealloc is fancier
(int, float, unicode) do use this pattern.
Unknown whether this fixes it.
- stringobject.c, PyString_FromFormatV: don't assume that va_list is of
a type that can be copied via an initializer.
- errors.c, PyErr_Format: add a va_end() to balance the va_start().
with the same value instead. This ensures that a string (or string
subclass) object's ob_sinterned pointer is always a str (or NULL), and
that the dict of interned strings only has strs as keys.
+ These were leaving the hash fields at 0, which all string and unicode
routines believe is a legitimate hash code. As a result, hash() applied
to str and unicode subclass instances always returned 0, which in turn
confused dict operations, etc.
+ Changed local names "new"; no point to antagonizing C++ compilers.
subclasses, all "the usual" ones (slicing etc), plus replace, translate,
ljust, rjust, center and strip. I don't know how to be sure they've all
been caught.
Question: Should we complain if someone tries to intern an instance of
a string subclass? I hate to slow any code on those paths.
PyString_FromFormatV(): In the final resize at the end, we can use
PyString_AS_STRING() since we know the object is a string and can
avoid the typechecking.
PyString_FromFormat(): GS sez: "For safety/propriety, you should call
va_end() on the vargs variable."
at least in the first two characters. %p is ill-defined, and people will
forever commit bad tests otherwise ("bad" in the sense that they fall
over (at least on Windows) for lack of a leading '0x'; 5 of the 7 tests
in test_repr.py failed on Windows for that reason this time around).
PyErr_Format() these new C API methods can be used instead of
sprintf()'s into hardcoded char* buffers. This allows us to fix
many situation where long package, module, or class names get
truncated in reprs.
PyString_FromFormat() is the varargs variety.
PyString_FromFormatV() is the va_list variety
Original PyErr_Format() code was modified to allow %p and %ld
expansions.
Many reprs were converted to this, checkins coming soo. Not
changed: complex_repr(), float_repr(), float_print(), float_str(),
int_repr(). There may be other candidates not yet converted.
Closes patch #454743.
- Do not compile unicodeobject, unicodectype, and unicodedata if Unicode is disabled
- check for Py_USING_UNICODE in all places that use Unicode functions
- disables unicode literals, and the builtin functions
- add the types.StringTypes list
- remove Unicode literals from most tests.
And remove all the extern decls in the middle of .c files.
Apparently, it was excluded from the header file because it is
intended for internal use by the interpreter. It's still intended for
internal use and documented as such in the header file.
Gave Python linear-time repr() implementations for dicts, lists, strings.
This means, e.g., that repr(range(50000)) is no longer 50x slower than
pprint.pprint() in 2.2 <wink>.
I don't consider this a bugfix candidate, as it's a performance boost.
Added _PyString_Join() to the internal string API. If we want that in the
public API, fine, but then it requires runtime error checks instead of
asserts.
and introduces a new method .decode().
The major change is that strg.encode() will no longer try to convert
Unicode returns from the codec into a string, but instead pass along
the Unicode object as-is. The same is now true for all other codec
return types. The underlying C APIs were changed accordingly.
Note that even though this does have the potential of breaking
existing code, the chances are low since conversion from Unicode
previously took place using the default encoding which is normally
set to ASCII rendering this auto-conversion mechanism useless for
most Unicode encodings.
The good news is that you can now use .encode() and .decode() with
much greater ease and that the door was opened for better accessibility
of the builtin codecs.
As demonstration of the new feature, the patch includes a few new
codecs which allow string to string encoding and decoding (rot13,
hex, zip, uu, base64).
Written by Marc-Andre Lemburg. Copyright assigned to the PSF.
interned when created, so the cached versions generally aren't ever
interned. With the patch, the
Py_INCREF(t);
*p = t;
Py_DECREF(s);
return;
indirection block in PyString_InternInPlace() is never executed during a
full run of the test suite, but was executed very many times before. So
I'm trading more work when creating one-character strings for doing less
work later. Note that the "more work" here can happen at most 256 times
per program run, so it's trivial. The same reasoning accounts for the
patch's simplification of string_item (the new version can call
PyString_FromStringAndSize() no more than 256 times per run, so there's
no point to inlining that stuff -- if we were serious about saving time
here, we'd pre-initialize the characters vector so that no runtime testing
at all was needed!).
to string.join(), so that when the latter figures out in midstream that
it really needs unicode.join() instead, unicode.join() can actually get
all the sequence elements (i.e., there's no guarantee that the sequence
passed to string.join() can be iterated over *again* by unicode.join(),
so string.join() must not pass on the original sequence object anymore).
Patch #419651: Metrowerks on Mac adds 0x itself
C std says %#x and %#X conversion of 0 do not add the 0x/0X base marker.
Metrowerks apparently does. Mark Favas reported the same bug under a
Compaq compiler on Tru64 Unix, but no other libc broken in this respect
is known (known to be OK under MSVC and gcc).
So just try the damn thing at runtime and see what the platform does.
Note that we've always had bugs here, but never knew it before because
a relevant test case didn't exist before 2.1.
new slot tp_iter in type object, plus new flag Py_TPFLAGS_HAVE_ITER
new C API PyObject_GetIter(), calls tp_iter
new builtin iter(), with two forms: iter(obj), and iter(function, sentinel)
new internal object types iterobject and calliterobject
new exception StopIteration
new opcodes for "for" loops, GET_ITER and FOR_ITER (also supported by dis.py)
new magic number for .pyc files
new special method for instances: __iter__() returns an iterator
iteration over dictionaries: "for x in dict" iterates over the keys
iteration over files: "for x in file" iterates over lines
TODO:
documentation
test suite
decide whether to use a different way to spell iter(function, sentinal)
decide whether "for key in dict" is a good idea
use iterators in map/filter/reduce, min/max, and elsewhere (in/not in?)
speed tuning (make next() a slot tp_next???)
"%#x" % 0
blew up, at heart because C sprintf supplies a base marker if and only if
the value is not 0. I then fixed that, by tolerating C's inconsistency
when it does %#x, and taking away that *Python* produced 0x0 when
formatting 0L (the "long" flavor of 0) under %#x itself. But after talking
with Guido, we agreed it would be better to supply 0x for the short int
case too, despite that it's inconsistent with C, because C is inconsistent
with itself and with Python's hex(0) (plus, while "%#x" % 0 didn't work
before, "%#x" % 0L *did*, and returned "0x0"). Similarly for %#X conversion.
http://sourceforge.net/tracker/index.php?func=detail&aid=415514&group_id=5470&atid=105470
For short ints, Python defers to the platform C library to figure out what
%#x should do. The code asserted that the platform C returned a string
beginning with "0x". However, that's not true when-- and only when --the
*value* being formatted is 0. Changed the code to live with C's inconsistency
here. In the meantime, the problem does not arise if you format a long 0 (0L)
instead. However, that's because the code *we* wrote to do %#x conversions on
longs produces a leading "0x" regardless of value. That's probably wrong too:
we should drop leading "0x", for consistency with C, when (& only when) formatting
0L. So I changed the long formatting code to do that too.
release the interned string dictionary. This is useful for memory
use debugging because it eliminates a huge source of noise from the
reports. Only defined when INTERN_STRINGS is defined.
Also fixes two long-standing bugs (present in 2.0):
1. .join() didn't check that the result size fit in an int.
2. string.join(s) when len(s)==1 returned s[0] regardless of s[0]'s
type; e.g., "".join([3]) returned 3 (overly optimistic optimization).
I resisted a keen temptation to make .join() apply str() automagically.
in case the parameters are out of bounds and fixes error handling
for .count(), .startswith() and .endswith() for the case of
mixed string/Unicode objects.
This patch adds Python style index semantics to PyUnicode_Count()
indices (including the special handling of negative indices).
The patch is an extended version of patch #103249 submitted
by Michael Hudson (mwh) on SF. It also includes new test cases.
Add definitions of INT_MAX and LONG_MAX to pyport.h.
Remove includes of limits.h and conditional definitions of INT_MAX
and LONG_MAX elsewhere.
This closes SourceForge patch #101659 and bug #115323.
Note a curious extension to the std C rules: x, X and o formatting can never produce
a sign character in C, so the '+' and ' ' flags are meaningless for them. But
unbounded ints *can* produce a sign character under these conversions (no fixed-
width bitstring is wide enough to hold all negative values in 2's-comp form). So
these flags become meaningful in Python when formatting a Python long which is too
big to fit in a C long. This required shuffling around existing code, which hacked
x and X conversions to death when both the '#' and '0' flags were specified: the
hacks weren't strong enough to deal with the simultaneous possibility of the ' ' or
'+' flags too, since signs were always meaningless before for x and X conversions.
Isomorphic shuffling was required in unicodeobject.c.
Also added dozens of non-trivial new unbounded-int test cases to test_format.py.
which implements the automatic conversion from Unicode to a string
object using the default encoding.
The new API is then put to use to have eval() and exec accept
Unicode objects as code parameter. This closes bugs #110924
and #113890.
As side-effect, the traditional C APIs PyString_Size() and
PyString_AsString() will also accept Unicode objects as
parameters.
all, either to see whether the # of chars fit in an int, or that the
amount of memory needed fit in a size_t. Checking these is expensive, but
the alternative is silently wrong answers (as in the bug report) or
core dumps (which were easy to provoke using Unicode strings).
shutdown time, but CVS log entry for revision 2.45 explains why this
is so. Simply include a comment so we don't have to re-figure it out
again 5 years from now.
comments, docstrings or error messages. I fixed two minor things in
test_winreg.py ("didn't" -> "Didn't" and "Didnt" -> "Didn't").
There is a minor style issue involved: Guido seems to have preferred English
grammar (behaviour, honour) in a couple places. This patch changes that to
American, which is the more prominent style in the source. I prefer English
myself, so if English is preferred, I'd be happy to supply a patch myself ;)
use PyString_AS_STRING macro on local string object
when resizing string, make sure resized string will always be big enough
split string containing error message across two lines
add test to string_tests that causes resizing
seqlen==1 clause, before returning item, we need to DECREF seq. In
the res=PyString... failure clause, we need to goto finally to also
decref seq (and the DECREF of res in finally is changed to a
XDECREF). Also, we need to DECREF seq just before the
PyUnicode_Join() return.
implementation -- use PySequence_Fast interface to iterate over elements
interface -- if instance object reports wrong length, ignore it;
previous version raised an IndexError if reported length was too high
was cascades of warnings about mismatching const decls. Overall,
I think const creates lots of headaches and solves almost
nothing. Added enough consts to shut up the warnings, but
this did require casting away const in one spot too (another
usual outcome of starting down this path): the function
mymemreplace can't return const char*, but sometimes wants to
return its first argument as-is, which latter must be declared
const char* in order to avoid const warnings at mymemreplace's
call sites. So, in the case the function wants to return the
first arg, that arg's declared constness must be subverted.
works just like the Unicode one. The C APIs match the ones in the Unicode
implementation, but were extended to be able to reuse the existing
Unicode codecs for string purposes too.
Conversions from string to Unicode and back are done using the
default encoding.
Fix the string methods that implement slice-like semantics with
optional args (count, find, endswith, etc.) to properly handle
indeces outside [INT_MIN, INT_MAX]. Previously the "i" formatter
for PyArg_ParseTuple was used to get the indices. These could overflow.
This patch changes the string methods to use the "O&" formatter with
the slice_index() function from ceval.c which is used to do the same
job for Python code slices (e.g. 'abcabcabc'[0:1000000000L]). slice_index()
is renamed _PyEval_SliceIndex() and is now exported. As well, the return
values for success/fail were changed to make slice_index directly
usable as required by the "O&" formatter.
[GvR: shouldn't a similar patch be applied to unicodeobject.c?]
gave bogus results for chars in the range 128-255, because their
implementation was using signed characters. Fixed this by using
unsigned character pointers (as opposed to using Py_CHARMASK()).
For more comments, read the patches@python.org archives.
For documentation read the comments in mymalloc.h and objimpl.h.
(This is not exactly what Vladimir posted to the patches list; I've
made a few changes, and Vladimir sent me a fix in private email for a
problem that only occurs in debug mode. I'm also holding back on his
change to main.c, which seems unnecessary to me.)
The maxsplit functionality in .splitlines() was replaced by the keepends
functionality which allows keeping the line end markers together
with the string.
Added support for '%r' % obj: this inserts repr(obj) rather
than str(obj).
* string_contains now calls PyUnicode_Contains() only when the other
operand is a Unicode string (not whenever it's not a string).
* New format style '%r' inserts repr(arg) instead of str(arg).
* '...%s...' % u"abc" now coerces to Unicode just like
string methods. Care is taken not to reevaluate already formatted
arguments -- only the first Unicode object appearing in the
argument mapping is looked up twice. Added test cases for
this to test_unicode.py.
Attached you find an update of the Unicode implementation.
The patch is against the current CVS version. I would appreciate
if someone with CVS checkin permissions could check the changes
in.
The patch contains all bugs and patches sent this week and also
fixes a leak in the codecs code and a bug in the free list code
for Unicode objects (which only shows up when compiling Python
with Py_DEBUG; thanks to MarkH for spotting this one).
specifier came from an int expression instead of a constant in the
format, a negative width was truncated to zero instead of taken to
mean the same as that negative constant plugged into the format. E.g.
"(%*s)" % (-5, "foo") yielded "(foo)" while "(%-5s)" yields "(foo )".
Now both yield the latter -- like sprintf() in C.
arbitrary nested parens in a %(...)X style format.
#Also folded two lines and added more detail to the error message for
#unsupported format character.
from the interned table. There are references in hard-to-find static
variables all over the interpreter, and it's not worth trying to get
rid of all those; but "uninterning" isn't fair either and may cause
subtle failures later -- so we have to keep them in the interned
table.
Also get rid of no-longer-needed insert of None in interned dict.
entirely redone operator overloading. The rules for class
instances are now much more relaxed than for other built-in types
(whose coerce must still return two objects of the same type)
* Objects/floatobject.c: add overflow check when converting float
to int and implement truncation towards zero using ceil/float
* Objects/longobject.c: change ValueError to OverflowError when
converting to int
* Objects/rangeobject.c: modernized
* Objects/stringobject.c: use HAVE_LIMITS instead of __STDC__
* Objects/xxobject.c: changed to use new style (not finished?)
image objects, and lots of new methods.
* Added counting of allocations and deallocations of builtin types if
COUNT_ALLOCS is defined. Had to move calls to NEWREF down in some
files.
* Bug fix in sorting lists.
Added $(SYSDEF) to its build rule in Makefile.
* cgensupport.[ch], modsupport.[ch]: removed some old stuff. Also
changed files that still used it... And made several things static
that weren't but should have been... And other minor cleanups...
* listobject.[ch]: add external interfaces {set,get}listslice
* socketmodule.c: fix bugs in new send() argument parsing.
* sunaudiodevmodule.c: added flush() and close().
before it.
* ceval.c, object.c: moved testbool() to object.c (now extern visible)
* stringobject.c: fix bugs in and rationalize string resize in formatstring()
* tokenizer.[ch]: fix non-working code for lines longer than BUFSIZ
* Stubs for faster implementation of local variables (not yet finished)
* Added function name to code object. Print it for code and function
objects. THIS MAKES THE .PYC FILE FORMAT INCOMPATIBLE (the version
number has changed accordingly)
* Print address of self for built-in methods
* New internal functions getattro and setattro (getattr/setattr with
string object arg)
* Replaced "dictobject" with more powerful "mappingobject"
* New per-type functio tp_hash to implement arbitrary object hashing,
and hashobject() to interface to it
* Added built-in functions hash(v) and hasattr(v, 'name')
* classobject: made some functions static that accidentally weren't;
added __hash__ special instance method to implement hash()
* Added proper comparison for built-in methods and functions
* Fixcprt.py: added [-y file] option, do only files younger than file.
* modsupport.[ch]: added vmkvalue().
* intobject.c: use mkvalue().
* stringobject.c: added "formatstring"; renamed string* to string_*;
ceval.c: call formatstring for string % value.
* longobject.c: close memory leak in divmod.
* parsetok.c: set result node to NULL when returning an error.