Fix time_hash() function: replace DATE_xxx() macros with TIME_xxx() macros.
Before, the hash function used a wrong value for microseconds if fold is set
(equal to 1).
Issue #28915: Replace _PyObject_CallMethodId() with
_PyObject_CallMethodIdObjArgs() when the format string was only made of "O"
formats, PyObject* arguments.
_PyObject_CallMethodIdObjArgs() avoids the creation of a temporary tuple and
doesn't have to parse a format string.
Issue #28915: Avoid calling _PyObject_CallMethodId() with "(...)" format to
avoid the creation of a temporary tuple: use Py_BuildValue() with
_PyObject_CallMethodIdObjArgs().
Don't pass "()" format to PyObject_CallXXX() to call a function without
argument: pass NULL as the format string instead. It avoids to have to parse a
string to produce 0 argument.
Added an optional argument timespec to the datetime isoformat() method
to choose the precision of the time component.
Original patch by Alessandro Cucci.
of datetime.datetime: microseconds are now rounded to nearest with ties going
to nearest even integer (ROUND_HALF_EVEN), instead of being rounding towards
zero (ROUND_DOWN). It's important that these methods use the same rounding
mode than datetime.timedelta to keep the property:
(datetime(1970,1,1) + timedelta(seconds=t)) == datetime.utcfromtimestamp(t)
It also the rounding mode used by round(float) for example.
Add more unit tests on the rounding mode in test_datetime.
On Windows, the tv_sec field of the timeval structure has the type C long,
whereas it has the type C time_t on all other platforms. A C long has a size of
32 bits (signed inter, 1 bit for the sign, 31 bits for the value) which is not
enough to store an Epoch timestamp after the year 2038.
Add the _PyTime_AsTimevalTime_t() function written for datetime.datetime.now():
convert a _PyTime_t timestamp to a (secs, us) tuple where secs type is time_t.
It allows to support dates after the year 2038 on Windows.
Enhance also _PyTime_AsTimeval_impl() to detect overflow on the number of
seconds when rounding the number of microseconds.
On Windows, the tv_sec field of the timeval structure has the type C long,
whereas it has the type C time_t on all other platforms. A C long has a size of
32 bits (signed inter, 1 bit for the sign, 31 bits for the value) which is not
enough to store an Epoch timestamp after the year 2038.
Add the _PyTime_AsTimevalTime_t() function written for datetime.datetime.now():
convert a _PyTime_t timestamp to a (secs, us) tuple where secs type is time_t.
It allows to support dates after the year 2038 on Windows.
Enhance also _PyTime_AsTimeval_impl() to detect overflow on the number of
seconds when rounding the number of microseconds.
datetime.datetime now round microseconds to nearest with ties going to nearest
even integer (ROUND_HALF_EVEN), as round(float), instead of rounding towards
-Infinity (ROUND_FLOOR).
pytime API: replace _PyTime_ROUND_HALF_UP with _PyTime_ROUND_HALF_EVEN. Fix
also _PyTime_Divide() for negative numbers.
_PyTime_AsTimeval_impl() now reuses _PyTime_Divide() instead of reimplementing
rounding modes.
"""Issue #23517: datetime.timedelta constructor now rounds microseconds to
nearest with ties going away from zero (ROUND_HALF_UP), as Python 2 and Python
older than 3.3, instead of rounding to nearest with ties going to nearest even
integer (ROUND_HALF_EVEN)."""
datetime.timedelta uses rounding mode ROUND_HALF_EVEN again.
datetime.datetime now round microseconds to nearest with ties going away from
zero (ROUND_HALF_UP), as Python 2 and Python older than 3.3, instead of
rounding towards -Infinity (ROUND_FLOOR).
with ties going away from zero (ROUND_HALF_UP), as Python 2 and Python older
than 3.3, instead of rounding to nearest with ties going to nearest even
integer (ROUND_HALF_EVEN).
Issue #23517: the change broke test_datetime. datetime.timedelta() rounding
mode must also be changed, and test_datetime must be updated for the new
rounding mode (half up).
datetime.datetime.utcfromtimestamp() now rounds to nearest with ties going away
from zero, instead of rounding towards minus infinity (-inf), as Python 2 and
Python older than 3.3.
The new syntax is highly human readable while still preventing false
positives. The syntax also extends Python syntax to denote "self" and
positional-only parameters, allowing inspect.Signature objects to be
totally accurate for all supported builtins in Python 3.4.
annotate text signatures in docstrings, resulting in fewer false
positives. "self" parameters are also explicitly marked, allowing
inspect.Signature() to authoritatively detect (and skip) said parameters.
Issue #20326: Argument Clinic now generates separate checksums for the
input and output sections of the block, allowing external tools to verify
that the input has not changed (and thus the output is not out-of-date).
PyMethodDescr_Type, _PyMethodWrapper_Type, and PyWrapperDescr_Type)
have been modified to provide introspection information for builtins.
Also: many additional Lib, test suite, and Argument Clinic fixes.
On AIX, the C function mktime() alwaysd sets tm_wday, even on error. So tm_wday
cannot be used as a sentinel to detect an error, we can only check if the
result is (time_t)-1.
time.ctime(), gmtime(), time.localtime(), datetime.date.fromtimestamp(),
datetime.datetime.fromtimestamp() and datetime.datetime.utcfromtimestamp() now
raises an OverflowError, instead of a ValueError, if the timestamp does not fit
in time_t.
datetime.datetime.fromtimestamp() and datetime.datetime.utcfromtimestamp() now
round microseconds towards zero instead of rounding to nearest with ties going
away from zero.
This copy also had a bug in it, it fails to incorporate the length
into the hash by using it as the loop variable so it'll always be -1
by the time it is XORed in.
As such: I'm doing this only in Python 3.3 and not backporting as it
would change the existing hash behavior of datetime objects.