project files, which have to be cleaned up before checking in, .prj
files are CW Pro 1 projects (which are always clean). Prj files are
still binhexed, even though they only have a data fork (and, hence,
could be checked in in binary mode).
code isn't ideal yet: xxx.Window(1).Paragraph(3).font will only work
if all the classes and properties are declared in the same suite, but
at least font(Paragraph(3, Window(1))) always works.
Py_DECREF, to reduce the warnings when compiling with reference count
debugging on. (There are still warnings for each call to
_Py_NewReference -- too bad.)
scheme based on object's types, have a simple two-phase scheme based
on object's *names*:
/* To make the execution order of destructors for global
objects a bit more predictable, we first zap all objects
whose name starts with a single underscore, before we clear
the entire dictionary. We zap them by replacing them with
None, rather than deleting them from the dictionary, to
avoid rehashing the dictionary (to some extent). */
from the interned table. There are references in hard-to-find static
variables all over the interpreter, and it's not worth trying to get
rid of all those; but "uninterning" isn't fair either and may cause
subtle failures later -- so we have to keep them in the interned
table.
Also get rid of no-longer-needed insert of None in interned dict.
no valid directory is passed in. This prevents __del__ to fail when
invoked after __builtins__ has already been discarded.
Also add PyFrame_Fini() to discard the cache of frames.
In _Py_PrintReferences(), no longer suppress once-referenced string.
Add Py_Malloc and friends and PyMem_Malloc and friends (malloc
wrappers for third parties).
Py_Initmodule(), which is a macro wrapper around it).
The return value is now a NULL pointer if the initialization failed.
This may make old modules fail with a SEGFAULT, since they don't
expect this kind of failure. That's OK, since (a) it "never" happens,
and (b) they would fail with a fatal error otherwise, anyway.
Tons of extension modules should now check the return value of
Py_Initmodule*() -- that's on my TODO list.
Introduce truly separate (sub)interpreter objects. For now, these
must be used by separate threads, created from C. See Demo/pysvr for
an example of how to use this. This also rationalizes Python's
initialization and finalization behavior:
Py_Initialize() -- initialize the whole interpreter
Py_Finalize() -- finalize the whole interpreter
tstate = Py_NewInterpreter() -- create a new (sub)interpreter
Py_EndInterpreter(tstate) -- delete a new (sub)interpreter
There are also new interfaces relating to threads and the interpreter
lock, which can be used to create new threads, and sometimes have to
be used to manipulate the interpreter lock when creating or deleting
sub-interpreters. These are only defined when WITH_THREAD is defined:
PyEval_AcquireLock() -- acquire the interpreter lock
PyEval_ReleaseLock() -- release the interpreter lock
PyEval_AcquireThread(tstate) -- acquire the lock and make the thread current
PyEval_ReleaseThread(tstate) -- release the lock and make NULL current
Other administrative changes:
- The header file bltinmodule.h is deleted.
- The init functions for Import, Sys and Builtin are now internal and
declared in pythonrun.h.
- Py_Setup() and Py_Cleanup() are no longer declared.
- The interpreter state and thread state structures are now linked
together in a chain (the chain of interpreters is a static variable
in pythonrun.c).
- Some members of the interpreter and thread structures have new,
shorter, more consistent, names.
- Added declarations for _PyImport_{Find,Fixup}Extension() to import.h.