Python interpreter.
This change adds two new C-level APIs: PyEval_SetProfile() and
PyEval_SetTrace(). These can be used to install profile and trace
functions implemented in C, which can operate at much higher speeds
than Python-based functions. The overhead for calling a C-based
profile function is a very small fraction of a percent of the overhead
involved in calling a Python-based function.
The machinery required to call a Python-based profile or trace
function been moved to sysmodule.c, where sys.setprofile() and
sys.setprofile() simply become users of the new interface.
As a side effect, SF bug #436058 is fixed; there is no longer a
_PyTrace_Init() function to declare.
Python interpreter.
This change adds two new C-level APIs: PyEval_SetProfile() and
PyEval_SetTrace(). These can be used to install profile and trace
functions implemented in C, which can operate at much higher speeds
than Python-based functions. The overhead for calling a C-based
profile function is a very small fraction of a percent of the overhead
involved in calling a Python-based function.
The machinery required to call a Python-based profile or trace
function been moved to sysmodule.c, where sys.setprofile() and
sys.setprofile() simply become users of the new interface.
that required explicitly calling LazyList.clear() in the two tests that
use LazyList (I added a LazyList Fibonacci generator too).
A real bitch: the extremely inefficient first version of the 2-3-5 test
*looked* like a slow leak on Win98SE, but it wasn't "really": it generated
so many results that the heap grew over 4Mb (tons of frames! the number
of frames grows exponentially in that test). Then Win98SE malloc() starts
fragmenting address space allocating more and more heaps, and the visible
memory use grew very slowly while the disk was thrashing like mad.
Printing fewer results (i.e., keeping the heap burden under 4Mb) made
that illusion vanish.
Looks like there's no hope for plugging the LazyList leaks automatically
short of adding frameobjects and genobjects to gc. OTOH, they're very
easy to break by hand, and they're the only *kind* of plausibly realistic
leaks I've been able to provoke.
Dilemma.
Implement sys.maxunicode.
Explicitly wrap around upper/lower computations for wide Py_UNICODE.
When decoding large characters with UTF-8, represent expected test
results using the \U notation.
- the correct range for the error message is range(0x110000);
- put the 4-byte Unicode-size code inside the same else branch as the
2-byte code, rather generating unreachable code in the 2-byte case.
- Don't hide the 'else' behine the '}'.
(I would prefer that in 4-byte mode, any value should be accepted, but
reasonable people can argue about that, so I'll put that off.)
Add configure option --enable-unicode.
Add config.h macros Py_USING_UNICODE, PY_UNICODE_TYPE, Py_UNICODE_SIZE,
SIZEOF_WCHAR_T.
Define Py_UCS2.
Encode and decode large UTF-8 characters into single Py_UNICODE values
for wide Unicode types; likewise for UTF-16.
Remove test whether sizeof Py_UNICODE is two.
"mapping" object, specifically one that supports PyMapping_Keys() and
PyObject_GetItem(). This allows you to say e.g. {}.update(UserDict())
We keep the special case for concrete dict objects, although that
seems moderately questionable. OTOH, the code exists and works, so
why change that?
.update()'s docstring already claims that D.update(E) implies calling
E.keys() so it's appropriate not to transform AttributeErrors in
PyMapping_Keys() to TypeErrors.
Patch eyeballed by Tim.
unicodeobject.h, which forces sizeof(Py_UNICODE) == sizeof(Py_UCS4).
(this may be good enough for platforms that doesn't have a 16-bit
type. the UTF-16 codecs don't work, though)
break cycles, which are a special problem when running generator tests
that provoke exceptions by invoking the .next() method of a named
generator-iterator: then the iterator is named in globs, and the
iterator's frame gets a tracekback object pointing back to globs, and
gc doesn't chase these types so the cycle leaks.
Also changed _run_examples() to make a copy of globs itself, so its
callers (direct and indirect) don't have to (and changed the callers
to stop making their own copies); *that* much is a change I've been
meaning to make for a long time (it's more robust the new way).
Here's a way to provoke the symptom without doctest; it leaks at a
prodigious rate; if the last two "source" lines are replaced with
g().next()
the iterator isn't named and then there's no leak:
source = """\
def g():
yield 1/0
k = g()
k.next()
"""
code = compile(source, "<source>", "exec")
def f(globs):
try:
exec code in globs
except ZeroDivisionError:
pass
while 1:
f(globals().copy())
After this change, running test_generators in an infinite loop still leaks,
but reduced from a flood to a trickle.