Due to the bizarre definition of _PyLong_Copy(), creating an instance
of a subclass of long with a negative value could cause core dumps
later on. Unfortunately it looks like the behavior of _PyLong_Copy()
is quite intentional, so the fix is more work than feels comfortable.
This fix is almost, but not quite, the code that Naofumi Honda added;
in addition, I added a test case.
deepcopy(), _reconstruct(): pass the memo to the other function, so
that recursive data structures built out of new-style objects may be
deeply copied correctly.
2.2.1 bugfix!
Fix for SF bug #492345. (I could've sworn I checked this in, but
apparently I didn't!)
This code:
class Classic:
pass
class New(Classic):
__metaclass__ = type
attempts to create a new-style class with only classic bases -- but it
doesn't work right. Attempts to fix it so it works caused problems
elsewhere, so I'm now raising a TypeError in this case.
Big Hammer to implement -Qnew as PEP 238 says it should work (a global
option affecting all instances of "/").
pydebug.h, main.c, pythonrun.c: define a private _Py_QnewFlag flag, true
iff -Qnew is passed on the command line. This should go away (as the
comments say) when true division becomes The Rule. This is
deliberately not exposed to runtime inspection or modification: it's
a one-way one-shot switch to pretend you're using Python 3.
ceval.c: when _Py_QnewFlag is set, treat BINARY_DIVIDE as
BINARY_TRUE_DIVIDE.
test_{descr, generators, zipfile}.py: fiddle so these pass under
-Qnew too. This was just a matter of s!/!//! in test_generators and
test_zipfile. test_descr was trickier, as testbinop() is passed
assumptions that "/" is the same as calling a "__div__" method; put
a temporary hack there to call "__truediv__" instead when the method
name is "__div__" and 1/2 evaluates to 0.5.
Three standard tests still fail under -Qnew (on Windows; somebody
please try the Linux tests with -Qnew too! Linux runs a whole bunch
of tests Windows doesn't):
test_augassign
test_class
test_coercion
I can't stay awake longer to stare at this (be my guest). Offhand
cures weren't obvious, nor was it even obvious that cures are possible
without major hackery.
Question: when -Qnew is in effect, should calls to __div__ magically
change into calls to __truediv__? See "major hackery" at tail end of
last paragraph <wink>.
It was easier than I thought, assuming that no other things contribute
to the instance size besides slots -- a pretty good bet. With a test
suite, no less!
happy if one could delete the __dict__ attribute of an instance. I
love to make Jim happy, so here goes...
- New-style objects now support deleting their __dict__. This is for
all intents and purposes equivalent to assigning a brand new empty
dictionary, but saves space if the object is not used further.
There's now a new structmember code, T_OBJECT_EX, which is used for
all __slot__ variables (except __weakref__, which has special behavior
anyway). This new code raises AttributeError when the variable is
NULL rather than converting NULL to None.
Rather than tweaking the inheritance of type object slots (which turns
out to be too messy to try), this fix adds a __hash__ to the list and
dict types (the only mutable types I'm aware of) that explicitly
raises an error. This has the advantage that list.__hash__([]) also
raises an error (previously, this would invoke object.__hash__([]),
returning the argument's address); ditto for dict.__hash__.
The disadvantage for this fix is that 3rd party mutable types aren't
automatically fixed. This should be added to the rules for creating
subclassable extension types: if you don't want your object to be
hashable, add a tp_hash function that raises an exception.
Also, it's possible that I've forgotten about other mutable types for
which this should be done.
SF patch #480716 by Greg Chapman fixes the problem that super's
__get__ method always returns an instance of super, even when the
instance whose __get__ method is called is an instance of a subclass
of super.
Other issues fixed:
- super(C, C()).__class__ would return the __class__ attribute of C()
rather than the __class__ attribute of the super object. This is
confusing. To fix this, I decided to change the semantics of super
so that it only applies to code attributes, not to data attributes.
After all, overriding data attributes is not supported anyway.
- While super(C, x) carefully checked that x is an instance of C,
super(C).__get__(x) made no such check, allowing for a loophole.
This is now fixed.
of multiple inheritance from a mix of new- and classic-style classes.
This is his patch, plus a start at some test cases from me. Will check
in more, plus a NEWS blurb, later tonight.
outer level, the iterator protocol is used for memory-efficiency (the
outer sequence may be very large if fully materialized); at the inner
level, PySequence_Fast() is used for time-efficiency (these should
always be sequences of length 2).
dictobject.c, new functions PyDict_{Merge,Update}FromSeq2. These are
wholly analogous to PyDict_{Merge,Update}, but process a sequence-of-2-
sequences argument instead of a mapping object. For now, I left these
functions file static, so no corresponding doc changes. It's tempting
to change dict.update() to allow a sequence-of-2-seqs argument too.
Also changed the name of dictionary's keyword argument from "mapping"
to "x". Got a better name? "mapping_or_sequence_of_pairs" isn't
attractive, although more so than "mosop" <wink>.
abstract.h, abstract.tex: Added new PySequence_Fast_GET_SIZE function,
much faster than going thru the all-purpose PySequence_Size.
libfuncs.tex:
- Document dictionary().
- Fiddle tuple() and list() to admit that their argument is optional.
- The long-winded repetitions of "a sequence, a container that supports
iteration, or an iterator object" is getting to be a PITA. Many
months ago I suggested factoring this out into "iterable object",
where the definition of that could include being explicit about
generators too (as is, I'm not sure a reader outside of PythonLabs
could guess that "an iterator object" includes a generator call).
- Please check my curly braces -- I'm going blind <0.9 wink>.
abstract.c, PySequence_Tuple(): When PyObject_GetIter() fails, leave
its error msg alone now (the msg it produces has improved since
PySequence_Tuple was generalized to accept iterable objects, and
PySequence_Tuple was also stomping on the msg in cases it shouldn't
have even before PyObject_GetIter grew a better msg).
used by the weakref code since he didn't like the word "referencable".
Is it really necessary to be more specific than to test for TypeError here,
though?
object.c, PyObject_Str: Don't try to optimize anything except exact
string objects here; in particular, let str subclasses go thru tp_str,
same as non-str objects. This allows overrides of tp_str to take
effect.
stringobject.c:
+ string_print (str's tp_print): If the argument isn't an exact string
object, get one from PyObject_Str.
+ string_str (str's tp_str): Make a genuine-string copy of the object if
it's of a proper str subclass type. str() applied to a str subclass
that doesn't override __str__ ends up here.
test_descr.py: New str_of_str_subclass() test.
inherit_slots(): tp_as_buffer was getting inherited as if it were a
method pointer, rather than a pointer to a vector of method pointers. As
a result, inheriting from a type that implemented buffer methods was
ineffective, leaving all the tp_as_buffer slots NULL in the subclass.
corresponding to a dispatch slot (e.g. __getitem__ or __add__) is set,
calculate the proper dispatch slot and propagate the change to all
subclasses. Because of multiple inheritance, there's no easy way to
avoid always recursing down the tree of subclasses. Who cares?
(There's more to do, but this works. There's also a test for this now.)
without the Py_TPFLAGS_CHECKTYPES flag) in the wrappers. This
required a few changes in test_descr.py to cope with the fact that the
complex type has __int__, __long__ and __float__ methods that always
raise an exception.
this type of test fails, vereq() does a better job of reporting than
verify().
Change vereq(x, y) to use "not x == y" rather than "x != y" -- it
makes a difference is some overloading tests.
For a dynamically constructed type object, fill in the tp_doc slot with
a copy of the argument dict's "__doc__" value, provided the latter exists
and is a string.
NOTE: I don't know what to do if it's a Unicode string, so in that case
tp_doc is left NULL (which shows up as Py_None if you do Class.__doc__).
Note that tp_doc holds a char*, not a general PyObject*.
test for modifying __getattr__ works, now that slot_tp_getattr_hook
zaps the slot if there's no hook. Added an XXX comment with a ref
back to slot_tp_getattr_hook.
- The test for deepcopy() in pickles() was indented wrongly, so it got
run twice (one for binary pickle mode, one for text pickle mode; but
the test doesn't depend on the pickle mode).
- In verbose mode, show which subtest (pickle/cPickle/deepcopy, text/bin).
staticness when __dynamic__ = 1 becomes the default:
- Some classes which are used to test the difference between static
and dynamic.
- Subclasses of complex: complex uses old-style numbers and the slot
wrappers used by dynamic classes only support new-style numbers.
(Ideally, the complex type should be fixed, but that looks like a
labor-intensive job.)
__rop__ now takes precendence over __op__. Those circumstances are:
- Both arguments are new-style classes
- Both arguments are new-style numbers
- Their implementation slots for tp_op differ
- Their types differ
- The right argument's type is a subtype of the left argument's type
Also did this for the ternary operator (pow) -- only the binary case
is dealt with properly though, since __rpow__ is not supported anyway.
fallback for objects that are neither supported by our dispatch table
nor have a __copy__ or __deepcopy__ method.
Changes to _reduce() in copy_reg.py to support reducing objects that
don't have a __dict__ -- copy.copy(complex()) now invokes _reduce().
Add tests for copy.copy() and copy.deepcopy() to test_regrtest.py.
- Made cls.__module__ writable.
- Ensure that obj.__dict__ is returned as {}, not None, even upon first
reference; it simply springs into life when you ask for it.
(*) The pickling support is provisional for the following reasons:
- It doesn't support classes with __slots__.
- It relies on additional support in copy_reg.py: the C method
__reduce__, defined in the object class, really calls calling
copy_reg._reduce(obj). Eventually the Python code in copy_reg.py
needs to be migrated to C, but I'd like to experiment with the
Python implementation first. The _reduce() code also relies on an
additional helper function, _reconstructor(), defined in
copy_reg.py; this should also be reimplemented in C.
same. I hope the test for structural equivalence is stringent enough.
It only allows the assignment if the old and new types:
- have the same basic size
- have the same item size
- have the same dict offset
- have the same weaklist offset
- have the same GC flag bit
- have a common base that is the same except for maybe the dict and
weaklist (which may have been added separately at the same offsets
in both types)
- property() now takes 4 keyword arguments: fget, fset, fdel, doc.
Note that the real purpose of the 'f' prefix is to make fdel fit in
('del' is a keyword, so can't used as a keyword argument name).
- These map to visible readonly attributes 'fget', 'fset', 'fdel',
and '__doc__' in the property object.
- fget/fset/fdel weren't discoverable from Python before.
- __doc__ is new, and allows to associate a docstring with a property.
- if __getattribute__ exists, it is called first;
if it doesn't exists, PyObject_GenericGetAttr is called first.
- if the above raises AttributeError, and __getattr__ exists,
it is called.
classes to __getattribute__, to make it crystal-clear that it doesn't
have the same semantics as overriding __getattr__ on classic classes.
This is a halfway checkin -- I'll proceed to add a __getattr__ hook
that works the way it works in classic classes.
instance.
Split a string comparison test in two halves, replacing "a==b==a" with
separate tests for a==b and b==a. (Reason: while experimenting, this
test failed, and I wanted to know if it was the first or the second ==
operator that failed.)
hack, and it's even more disgusting than a PyInstance_Check() call.
If the tp_compare slot is the slot used for overrides in Python,
it's always called.
Add some tests that show what should work too.
and are lists, and then just the string elements (if any)).
There are good and bad reasons for this. The good reason is to support
dir() "like before" on objects of extension types that haven't migrated
to the class introspection API yet. The bad reason is that Python's own
method objects are such a type, and this is the quickest way to get their
im_self etc attrs to "show up" via dir(). It looks much messier to move
them to the new scheme, as their current getattr implementation presents
a view of their attrs that's a untion of their own attrs plus their
im_func's attrs. In particular, methodobject.__dict__ actually returns
methodobject.im_func.__dict__, and if that's important to preserve it
doesn't seem to fit the class introspection model at all.
Both int and long multiplication are changed to be more careful in
their assumptions about when one of the arguments is a sequence: the
assumption that at least one of the arguments must be an int (or long,
respectively) is still held, but the assumption that these don't smell
like sequences is no longer true: a subtype of int or long may well
have a sequence-repeat thingie!
keys are true strings -- no subclasses need apply. This may be debatable.
The problem is that a str subclass may very well want to override __eq__
and/or __hash__ (see the new example of case-insensitive strings in
test_descr), but go-fast shortcuts for strings are ubiquitous in our dicts
(and subclass overrides aren't even looked for then). Another go-fast
reason for the change is that PyCheck_StringExact() is a quicker test
than PyCheck_String(), and we make such a test on virtually every access
to every dict.
OTOH, a str subclass may also be perfectly happy using the base str eq
and hash, and this change slows them a lot. But those cases are still
hypothetical, while Python's own reliance on true-string dicts is not.
just by doing type(f) where f is any file object. This left a hole in
restricted execution mode that rexec.py can't plug by itself (although it
can plug part of it; the rest is plugged in fileobject.c now).
on to the tp_new slot (if non-NULL), as well as to the tp_init slot (if
any). A sane type implementing both tp_new and tp_init should probably
pay attention to the arguments in only one of them.
with the same value instead. This ensures that a string (or string
subclass) object's ob_sinterned pointer is always a str (or NULL), and
that the dict of interned strings only has strs as keys.
+ These were leaving the hash fields at 0, which all string and unicode
routines believe is a legitimate hash code. As a result, hash() applied
to str and unicode subclass instances always returned 0, which in turn
confused dict operations, etc.
+ Changed local names "new"; no point to antagonizing C++ compilers.
subclasses, all "the usual" ones (slicing etc), plus replace, translate,
ljust, rjust, center and strip. I don't know how to be sure they've all
been caught.
Question: Should we complain if someone tries to intern an instance of
a string subclass? I hate to slow any code on those paths.
tuple(i) repaired to return a true tuple when i is an instance of a
tuple subclass.
Added PyTuple_CheckExact macro.
PySequence_Tuple(): if a tuple-like object isn't exactly a tuple, it's
not safe to return the object as-is -- make a new tuple of it instead.
Given an immutable type M, and an instance I of a subclass of M, the
constructor call M(I) was just returning I as-is; but it should return a
new instance of M. This fixes it for M in {int, long}. Strings, floats
and tuples remain to be done.
Added new macros PyInt_CheckExact and PyLong_CheckExact, to more easily
distinguish between "is" and "is a" (i.e., only an int passes
PyInt_CheckExact, while any sublass of int passes PyInt_Check).
Added private API function _PyLong_Copy.
of PyMapping_Keys because we know we have a real dict. Tolerate that
objects may have an attr named "__dict__" that's not a dict (Py_None
popped up during testing).
test_descr.py, test_dir(): Test the new classic-class behavior; beef up
the new-style class test similarly.
test_pyclbr.py, checkModule(): dir(C) is no longer a synonym for
C.__dict__.keys() when C is a classic class (looks like the same thing
that burned distutils! -- should it be *made* a synoym again? Then it
would be inconsistent with new-style class behavior.).
bag. It's clearly wrong for classic classes, at heart because a classic
class doesn't have a __class__ attribute, and I'm unclear on whether
that's feature or bug. I'll repair this once I find out (in the
meantime, dir() applied to classic classes won't find the base classes,
while dir() applied to a classic-class instance *will* find the base
classes but not *their* base classes).
Please give the new dir() a try and see whether you love it or hate it.
The new dir([]) behavior is something I could come to love. Here's
something to hate:
>>> class C:
... pass
...
>>> c = C()
>>> dir(c)
['__doc__', '__module__']
>>>
The idea that an instance has a __doc__ attribute is jarring (of course
it's really c.__class__.__doc__ == C.__doc__; likewise for __module__).
OTOH, the code already has too many special cases, and dir(x) doesn't
have a compelling or clear purpose when x isn't a module.
mapping object", in the same sense dict.update(x) requires of x (that x
has a keys() method and a getitem).
Questionable: The other type constructors accept a keyword argument, so I
did that here too (e.g., dictionary(mapping={1:2}) works). But type_call
doesn't pass the keyword args to the tp_new slot (it passes NULL), it only
passes them to the tp_init slot, so getting at them required adding a
tp_init slot to dicts. Looks like that makes the normal case (i.e., no
args at all) a little slower (the time it takes to call dict.tp_init and
have it figure out there's nothing to do).
when an unbound method of class A is stored as a class variable of
class B, and class B is *not* a subclass of class A, that method
should *not* get bound to B instances.
+ test_compare. While None compares less than anything else, it's not
always the case that None has the smallest id().
+ test_descr. The output of %p (pointer) formats varies across platforms.
In particular, on Windows it doesn't produce a leading "0x".
- Remove various 'global' directives and move some global definitions
inside the test functions that use them -- we have nested scopes so
the old hacks using globals are no longer needed.