renamed Include/bytesobject.h to Include/bytearrayobject.h
renamed Include/stringobject.h to Include/bytesobject.h
added Include/stringobject.h with aliases
Adds 'n' as a format specifier for integers, to mirror the same
specifier which is already available for floats. 'n' is the same as
'd', but inserts the current locale-specific thousands grouping.
I added this as a stringlib function, but it's only used by str type,
not unicode. This is because of an implementation detail in
unicode.format(), which does its own str->unicode conversion. But the
unicode version will be needed in 3.0, and it may be needed by other
code eventually in 2.6 (maybe decimal?), so I left it as a stringlib
implementation. As long as the unicode version isn't instantiated,
there's no overhead for this.
svn+ssh://pythondev@svn.python.org/python/branches/trunk-bytearray
........
r61750 | christian.heimes | 2008-03-22 20:47:44 +0100 (Sat, 22 Mar 2008) | 1 line
Copied files from py3k w/o modifications
........
r61752 | christian.heimes | 2008-03-22 20:53:20 +0100 (Sat, 22 Mar 2008) | 7 lines
Take One
* Added initialization code, warnings, flags etc. to the appropriate places
* Added new buffer interface to string type
* Modified tests
* Modified Makefile.pre.in to compile the new files
* Added bytesobject.c to Python.h
........
r61754 | christian.heimes | 2008-03-22 21:22:19 +0100 (Sat, 22 Mar 2008) | 2 lines
Disabled bytearray.extend for now since it causes an infinite recursion
Fixed serveral unit tests
........
r61756 | christian.heimes | 2008-03-22 21:43:38 +0100 (Sat, 22 Mar 2008) | 5 lines
Added PyBytes support to several places:
str + bytearray
ord(bytearray)
bytearray(str, encoding)
........
r61760 | christian.heimes | 2008-03-22 21:56:32 +0100 (Sat, 22 Mar 2008) | 1 line
Fixed more unit tests related to type('') is not unicode
........
r61763 | christian.heimes | 2008-03-22 22:20:28 +0100 (Sat, 22 Mar 2008) | 2 lines
Fixed more unit tests
Fixed bytearray.extend
........
r61768 | christian.heimes | 2008-03-22 22:40:50 +0100 (Sat, 22 Mar 2008) | 1 line
Implemented old buffer interface for bytearray
........
r61772 | christian.heimes | 2008-03-22 23:24:52 +0100 (Sat, 22 Mar 2008) | 1 line
Added backport of the io module
........
r61775 | christian.heimes | 2008-03-23 03:50:49 +0100 (Sun, 23 Mar 2008) | 1 line
Fix str assignement to bytearray. Assignment of a str of size 1 is interpreted as a single byte
........
r61805 | christian.heimes | 2008-03-23 19:33:48 +0100 (Sun, 23 Mar 2008) | 3 lines
Fixed more tests
Fixed bytearray() comparsion with unicode()
Fixed iterator assignment of bytearray
........
r61809 | christian.heimes | 2008-03-23 21:02:21 +0100 (Sun, 23 Mar 2008) | 2 lines
str(bytesarray()) now returns the bytes and not the representation of the bytearray object
Enabled and fixed more unit tests
........
r61812 | christian.heimes | 2008-03-23 21:53:08 +0100 (Sun, 23 Mar 2008) | 3 lines
Clear error PyNumber_AsSsize_t() fails
Use CHARMASK for ob_svall access
disabled a test with memoryview again
........
r61819 | christian.heimes | 2008-03-23 23:05:57 +0100 (Sun, 23 Mar 2008) | 1 line
Untested updates to the PCBuild directory
........
r61917 | christian.heimes | 2008-03-26 00:57:06 +0100 (Wed, 26 Mar 2008) | 1 line
The type system of Python 2.6 has subtle differences to 3.0's. I've removed the Py_TPFLAGS_BASETYPE flags from bytearray for now. bytearray can't be subclasses until the issues with bytearray subclasses are fixed.
........
r61920 | christian.heimes | 2008-03-26 01:44:08 +0100 (Wed, 26 Mar 2008) | 2 lines
Disabled last failing test
I don't understand what the test is testing and how it suppose to work. Ka-Ping, please check it out.
........
r61930 | christian.heimes | 2008-03-26 12:46:18 +0100 (Wed, 26 Mar 2008) | 1 line
Re-enabled bytes warning code
........
r61933 | christian.heimes | 2008-03-26 13:20:46 +0100 (Wed, 26 Mar 2008) | 1 line
Fixed a bug in the new buffer protocol. The buffer slots weren't copied into a subclass.
........
r61934 | christian.heimes | 2008-03-26 13:25:09 +0100 (Wed, 26 Mar 2008) | 1 line
Re-enabled bytearray subclassing - all tests are passing.
........
Highlights:
- Adding PyObject_Format.
- Adding string.Format class.
- Adding __format__ for str, unicode, int, long, float, datetime.
- Adding builtin format.
- Adding ''.format and u''.format.
- str/unicode fixups for formatters.
The files in Objects/stringlib that implement PEP 3101 (stringdefs.h,
unicodedefs.h, formatter.h, string_format.h) are identical in trunk
and py3k. Any changes from here on should be made to trunk, and
changes will propogate to py3k).
as usual with slicing (both with str and unicode strings). This
fixes issue 1259.
For str only the stringobject.c file was modified. But for unicode,
I needed to repeat in the four functions a lot of code, so created
a new function that does part of the job for them (and placed it in
find.h, following a suggestion of Barry).
Also added tests for this behaviour.
also hex escapes) -- this was reaching beyond the end of the input string
buffer, even though it is not supposed to be \0-terminated.
This has no visible effect but is clearly the correct thing to do.
(In 3.0 it had a visible effect after removing ob_sstate from PyString.)
- Specialcase extended slices that amount to a shallow copy the same way as
is done for simple slices, in the tuple, string and unicode case.
- Specialcase step-1 extended slices to optimize the common case for all
involved types.
- For lists, allow extended slice assignment of differing lengths as long
as the step is 1. (Previously, 'l[:2:1] = []' failed even though
'l[:2] = []' and 'l[:2:None] = []' do not.)
- Implement extended slicing for buffer, array, structseq, mmap and
UserString.UserString.
- Implement slice-object support (but not non-step-1 slice assignment) for
UserString.MutableString.
- Add tests for all new functionality.
a large width is passed on 32-bit platforms. Found by Google.
It would be good for people to review this especially carefully and verify
I don't have an off by one error and there is no other way to cause overflow.
of some of the common builtin types.
Use a bit in tp_flags for each common builtin type. Check the bit
to determine if any instance is a subclass of these common types.
The check avoids a function call and O(n) search of the base classes.
The check is done in the various Py*_Check macros rather than calling
PyType_IsSubtype().
All the bits are set in tp_flags when the type is declared
in the Objects/*object.c files because PyType_Ready() is not called
for all the types. Should PyType_Ready() be called for all types?
If so and the change is made, the changes to the Objects/*object.c files
can be reverted (remove setting the tp_flags). Objects/typeobject.c
would also have to be modified to add conditions
for Py*_CheckExact() in addition to each the PyType_IsSubtype check.
* unified the way intobject, longobject and mystrtoul handle
values around -sys.maxint-1.
* in general, trying to entierely avoid overflows in any computation
involving signed ints or longs is extremely involved. Fixed a few
simple cases where a compiler might be too clever (but that's all
guesswork).
* more overflow checks against bad data in marshal.c.
* 2.5 specific: fixed a number of places that were still confusing int
and Py_ssize_t. Some of them could potentially have caused
"real-world" breakage.
* list.pop(x): fixing overflow issues on x was messy. I just reverted
to PyArg_ParseTuple("n"), which does the right thing. (An obscure
test was trying to give a Decimal to list.pop()... doesn't make
sense any more IMHO)
* trying to write a few tests...
I modified this patch some by fixing style, some error checking, and adding
XXX comments. This patch requires review and some changes are to be expected.
I'm checking in now to get the greatest possible review and establish a
baseline for moving forward. I don't want this to hold up release if possible.
(If compiled without FAST search support, changed the pre-memcmp test
to check the last character as well as the first. This gave a 25%
speedup for my test case.)
Rewrote the split algorithms so they stop when maxsplit gets to 0.
Previously they did a string match first then checked if the maxsplit
was reached. The new way prevents a needless string search.
results list.
Originally it allocated 0 items and used the list growth during append. Now
it preallocates 12 items so the first few appends don't need list reallocs.
("Here are some words ."*2).split(None, 1) is 7% faster
("Here are some words ."*2).split() is is 15% faster
(Your milage may vary, see dealership for details.)
File parsing like this
for line in f:
count += len(line.split())
is also about 15% faster. There is a slowdown of about 3% for large
strings because of the additional overhead of checking if the append is
to a preallocated region of the list or not. This will be the rare case.
It could be improved with special case code but we decided it was not
useful enough.
There is a cost of 12*sizeof(PyObject *) bytes per list. For the normal
case of file parsing this is not a problem because of the lists have
a short lifetime. We have not come up with cases where this is a problem
in real life.
I chose 12 because human text averages about 11 words per line in books,
one of my data sets averages 6.2 words with a final peak at 11 words per
line, and I work with a tab delimited data set with 8 tabs per line (or
9 words per line). 12 encompasses all of these.
Also changed the last rstrip code to append then reverse, rather than
doing insert(0). The strip() and rstrip() times are now comparable.
this is on par with a corresponding find, and nearly twice as fast
as split(sep, 1)
full tests, a unicode version, and documentation will follow to-
morrow.
made a copy of the string using PyString_FromStringAndSize(s, n) and modify
the copied string in-place. However, 1 (and 0) character strings are shared
from a cache. This cause "A".replace("A", "a") to change the cached version
of "A" -- used by everyone.
Now may the copy with NULL as the string and do the memcpy manually. I've
added regression tests to check if this happens in the future. Perhaps
there should be a PyString_Copy for this case?
about "%u", "%lu" and "%zu" formats.
Since PyString_FromFormat and PyErr_Format have exactly the same rules
(both inherited from PyString_FromFormatV), it would be good if someone
with more LaTeX Fu changed one of them to just point to the other.
Their docs were way out of synch before this patch, and I just did a
mass copy+paste to repair that.
Not a backport candidate (this is a new feature).
zfill stringmethods, so they can create strings larger than 2Gb on 64bit
systems (even win64.) The unicode versions of these methods already did this
right.
This will hopefully get rid of some Coverity warnings, be a hint to
developers, and be marginally faster.
Some asserts were added when the type is currently known, but depends
on values from another function.