Changed PyUnicode_Splitlines() maxsplit argument to keepends.
The maxsplit functionality was replaced by the keepends
functionality which allows keeping the line end markers together
with the string.
his copy of test_contains.py seems to be broken -- the lines he
deleted were already absent). Checkin messages:
New Unicode support for int(), float(), complex() and long().
- new APIs PyInt_FromUnicode() and PyLong_FromUnicode()
- added support for Unicode to PyFloat_FromString()
- new encoding API PyUnicode_EncodeDecimal() which converts
Unicode to a decimal char* string (used in the above new
APIs)
- shortcuts for calls like int(<int object>) and float(<float obj>)
- tests for all of the above
Unicode compares and contains checks:
- comparing Unicode and non-string types now works; TypeErrors
are masked, all other errors such as ValueError during
Unicode coercion are passed through (note that PyUnicode_Compare
does not implement the masking -- PyObject_Compare does this)
- contains now works for non-string types too; TypeErrors are
masked and 0 returned; all other errors are passed through
Better testing support for the standard codecs.
Misc minor enhancements, such as an alias dbcs for the mbcs codec.
Changes:
- PyLong_FromString() now applies the same error checks as
does PyInt_FromString(): trailing garbage is reported
as error and not longer silently ignored. The only characters
which may be trailing the digits are 'L' and 'l' -- these
are still silently ignored.
- string.ato?() now directly interface to int(), long() and
float(). The error strings are now a little different, but
the type still remains the same. These functions are now
ready to get declared obsolete ;-)
- PyNumber_Int() now also does a check for embedded NULL chars
in the input string; PyNumber_Long() already did this (and
still does)
Followed by:
Looks like I've gone a step too far there... (and test_contains.py
seem to have a bug too).
I've changed back to reporting all errors in PyUnicode_Contains()
and added a few more test cases to test_contains.py (plus corrected
the join() NameError).
executive summary:
Instead of typing 'apply(f, args, kwargs)' you can type 'f(*arg, **kwargs)'.
Some file-by-file details follow.
Grammar/Grammar:
simplify varargslist, replacing '*' '*' with '**'
add * & ** options to arglist
Include/opcode.h & Lib/dis.py:
define three new opcodes
CALL_FUNCTION_VAR
CALL_FUNCTION_KW
CALL_FUNCTION_VAR_KW
Python/ceval.c:
extend TypeError "keyword parameter redefined" message to include
the name of the offending keyword
reindent CALL_FUNCTION using four spaces
add handling of sequences and dictionaries using extend calls
fix function import_from to use PyErr_Format
The attached patch set includes a workaround to get Python with
Unicode compile on BSDI 4.x (courtesy Thomas Wouters; the cause
is a bug in the BSDI wchar.h header file) and Python interfaces
for the MBCS codec donated by Mark Hammond.
Also included are some minor corrections w/r to the docs of
the new "es" and "es#" parser markers (use PyMem_Free() instead
of free(); thanks to Mark Hammond for finding these).
The unicodedata tests are now in a separate file
(test_unicodedata.py) to avoid problems if the module cannot
be found.
/* More standard operations (at end for binary compatibility) */
should now be:
/* More standard operations (here for binary compatibility) */
since they're no longer at the end!
Attached you find an update of the Unicode implementation.
The patch is against the current CVS version. I would appreciate
if someone with CVS checkin permissions could check the changes
in.
The patch contains all bugs and patches sent this week and also
fixes a leak in the codecs code and a bug in the free list code
for Unicode objects (which only shows up when compiling Python
with Py_DEBUG; thanks to MarkH for spotting this one).
Added wrapping macros to dictobject.c, listobject.c, tupleobject.c,
frameobject.c, traceback.c that safely prevends core dumps
on stack overflow. Macros and functions in object.c, object.h.
The method is an "elevator destructor" that turns cascading
deletes into tail recursive behavior when some limit is hit.
a new proc type (objobjproc), a new slot sq_contains to
PySequenceMethods, and a new flag Py_TPFLAGS_HAVE_SEQUENCE_IN to
Py_TPFLAGS_DEFAULT. More to follow.
Introduce a new builtin exception, UnboundLocalError, raised when ceval.c
tries to retrieve or delete a local name that isn't bound to a value.
Currently raises NameError, which makes this behavior a FAQ since the same
error is raised for "missing" global names too: when the user has a global
of the same name as the unbound local, NameError makes no sense to them.
Even in the absence of shadowing, knowing whether a bogus name is local or
global is a real aid to quick understanding.
Example:
D:\src\PCbuild>type local.py
x = 42
def f():
print x
x = 13
return x
f()
D:\src\PCbuild>python local.py
Traceback (innermost last):
File "local.py", line 8, in ?
f()
File "local.py", line 4, in f
print x
UnboundLocalError: x
D:\src\PCbuild>
Note that UnboundLocalError is a subclass of NameError, for compatibility
with existing class-exception code that may be trying to catch this as a
NameError. Unfortunately, I see no way to make this wholly compatible
with -X (see comments in bltinmodule.c): under -X, [UnboundLocalError
is an alias for NameError --GvR].
[The ceval.c patch differs slightly from the second version that Tim
submitted; I decided not to raise UnboundLocalError for DELETE_NAME,
only for DELETE_LOCAL. DELETE_NAME is only generated at the module
level, and since at that level a NameError is raised for referencing
an undefined name, it should also be raised for deleting one.]
indicate to those that are using the CVS access that they are using a
newer-than-1.2.5 version, without committing to a particular version
number or patch level.
PycStringIO_IMPORT. While arguably the name used in the documentation
is more consistent, I think it's probably safer not to change the
macro definition and instead fix the doco.
Add a new member to the PyBufferProcs struct, bf_getcharbuffer. For
backward compatibility, this member should only be used (this includes
testing for NULL!) when the flag Py_TPFLAGS_HAVE_GETCHARBUFFER is set
in the type structure, below. Note that if its flag is not set, we
may be looking at an extension module compiled for 1.5.1, which will
have garbage at the bf_getcharbuffer member (because the struct wasn't
as long then). If the flag is one, the pointer may still be NULL.
The function found at this member is used in a similar manner as
bf_getreadbuffer, but it is known to point to 8-bit character data.
(See discussion in getargs.c checked in later.)
As a general feature for extending the type structure and the various
structures that (may) hang off it in a backwards compatible way, we
rename the tp_xxx4 "spare" slot to tp_flags. In 1.5.1 and before,
this slot was always zero. In 1.5.1, it may contain various flags
indicating extra fields that weren't present in 1.5.1. The only flag
defined so far is for the bf_getcharbuffer member of the PyBufferProcs
struct.
Note that the new spares (tp_xxx5 - tp_xxx8), once they become used,
should also be protected by a flag (or flags) in tp_flags.