* Revert "bpo-40521: Make the empty frozenset per interpreter (GH-21068)"
This reverts commit 261cfedf76.
* bpo-40521: Empty frozensets are no longer singletons
* Complete the removal of the frozenset singleton
Each interpreter now has its own empty bytes string and single byte
character singletons.
Replace STRINGLIB_EMPTY macro with STRINGLIB_GET_EMPTY() macro.
Each interpreter now has its own dict free list:
* Move dict free lists into PyInterpreterState.
* Move PyDict_MAXFREELIST define to pycore_interp.h
* Add _Py_dict_state structure.
* Add tstate parameter to _PyDict_ClearFreeList() and _PyDict_Fini().
* In debug mode, ensure that the dict free lists are not used after
_PyDict_Fini() is called.
* Remove "#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS".
zip() now supports PEP 618's strict parameter, which raises a
ValueError if the arguments are exhausted at different lengths.
Patch by Brandt Bucher.
Co-authored-by: Brandt Bucher <brandtbucher@gmail.com>
Co-authored-by: Ram Rachum <ram@rachum.com>
The PY_SSIZE_T_CLEAN macro must now be defined to use
PyArg_ParseTuple() and Py_BuildValue() "#" formats: "es#", "et#",
"s#", "u#", "y#", "z#", "U#" and "Z#". See the PEP 353.
Update _testcapi.test_buildvalue_issue38913().
When a file ends with a line that contains a line continuation character
the text of the emitted SyntaxError is empty, contrary to the old
parser, where the error text contained the text of the last line.
The C99 functions snprintf() and vsnprintf() are now required
to build Python.
PyOS_snprintf() and PyOS_vsnprintf() no longer call Py_FatalError().
Previously, they called Py_FatalError() on a buffer overflow on platforms
which don't provide vsnprintf().
On Windows, #include "pyerrors.h" no longer defines "snprintf" and
"vsnprintf" macros.
PyOS_snprintf() and PyOS_vsnprintf() should be used to get portable
behavior.
Replace snprintf() calls with PyOS_snprintf() and replace vsnprintf()
calls with PyOS_vsnprintf().
In GH-2866, _Py_Bit_Length() was added to pymath.h for lack of a better
location. GH-20518 added a more appropriate header file for bit utilities. It
also shows how to properly use intrinsics. This allows reconsidering bpo-29782.
* Move the function to the new header.
* Changed return type to match __builtin_clzl() and reviewed usage.
* Use intrinsics where available.
* Pick a fallback implementation suitable for inlining.
This commit removes the old parser, the deprecated parser module, the old parser compatibility flags and environment variables and all associated support code and documentation.
The PEP 353, written in 2005, introduced PY_FORMAT_SIZE_T. Python no
longer supports macOS 10.4 and Visual Studio 2010, but requires more
recent macOS and Visual Studio versions. In 2020 with Python 3.10, it
is now safe to use directly "%zu" to format size_t and "%zi" to
format Py_ssize_t.
Export explicitly the Py_GetArgcArgv() function to the C API and
document the function. Previously, it was exported implicitly which
no longer works since Python is built with -fvisibility=hidden.
* Add PyConfig._orig_argv member.
* Py_InitializeFromConfig() no longer calls _PyConfig_Write() twice.
* PyConfig_Read() no longer initializes Py_GetArgcArgv(): it is now
_PyConfig_Write() responsibility.
* _PyConfig_Write() result type becomes PyStatus instead of void.
* Write an unit test on Py_GetArgcArgv().
* Rename pycore_byteswap.h to pycore_bitutils.h.
* Move popcount_digit() to pycore_bitutils.h as _Py_popcount32().
* _Py_popcount32() uses GCC and clang builtin function if available.
* Add unit tests to _Py_popcount32().
* Provide native .files support on SourceFileLoader.
* Add native importlib.resources.files() support to zipimporter. Remove fallback support.
* make regen-all
* 📜🤖 Added by blurb_it.
* Move 'files' into the ResourceReader so it can carry the relevant module name context.
* Create 'importlib.readers' module and add FileReader to it.
* Add zip reader and rely on it for a TraversableResources object on zipimporter.
* Remove TraversableAdapter, no longer needed.
* Update blurb.
* Replace backslashes with forward slashes.
* Incorporate changes from importlib_metadata 2.0, finalizing the interface for extension via get_resource_reader.
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
In debug mode, ensure that free lists are no longer used after being
finalized. Set numfree to -1 in finalization functions
(eg. _PyList_Fini()), and then check that numfree is not equal to -1
before using a free list (e.g list_dealloc()).
Each interpreter now has its own context free list:
* Move context free list into PyInterpreterState.
* Add _Py_context_state structure.
* Add tstate parameter to _PyContext_ClearFreeList()
and _PyContext_Fini().
* Pass tstate to clear_freelists().
Each interpreter now has its own asynchronous generator free lists:
* Move async gen free lists into PyInterpreterState.
* Move _PyAsyncGen_MAXFREELIST define to pycore_interp.h
* Add _Py_async_gen_state structure.
* Add tstate parameter to _PyAsyncGen_ClearFreeLists
and _PyAsyncGen_Fini().
Each interpreter now has its own list free list:
* Move list numfree and free_list into PyInterpreterState.
* Add _Py_list_state structure.
* Add tstate parameter to _PyList_ClearFreeList()
and _PyList_Fini().
* Remove "#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS".
* _PyGC_Fini() clears gcstate->garbage list which can be stored in
the list free list. Call _PyGC_Fini() before _PyList_Fini() to
prevent leaking this list.
Each interpreter now has its own frame free list:
* Move frame free list into PyInterpreterState.
* Add _Py_frame_state structure.
* Add tstate parameter to _PyFrame_ClearFreeList()
and _PyFrame_Fini().
* Remove "#if PyFrame_MAXFREELIST > 0".
* Remove "#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS".
Each interpreter now has its own float free list:
* Move tuple numfree and free_list into PyInterpreterState.
* Add _Py_float_state structure.
* Add tstate parameter to _PyFloat_ClearFreeList()
and _PyFloat_Fini().
Each interpreter now has its own tuple free lists:
* Move tuple numfree and free_list arrays into PyInterpreterState.
* Define PyTuple_MAXSAVESIZE and PyTuple_MAXFREELIST macros in
pycore_interp.h.
* Add _Py_tuple_state structure. Pass it explicitly to tuple_alloc().
* Add tstate parameter to _PyTuple_ClearFreeList()
* Each interpreter now has its own empty tuple singleton.
If name is NULL, name is now set to co->co_name.
If qualname is NULL, qualname is now set to name.
qualname must not be NULL: it is used to build error messages.
Cleanup also the code: declare variables where they are initialized.
Rename "name" local variables to "varname" to avoid overriding "name"
parameter.
Since _PyImport_ReInitLock() now calls _PyThread_at_fork_reinit() on
the import lock, the lock is now in a known state: unlocked. It
became safe to acquire it after fork.
PyOS_AfterFork_Child() helper functions now return a PyStatus:
PyOS_AfterFork_Child() is now responsible to handle errors.
* Move _PySignal_AfterFork() to the internal C API
* Add #ifdef HAVE_FORK on _PyGILState_Reinit(), _PySignal_AfterFork()
and _PyInterpreterState_DeleteExceptMain().
* Fix failure of _Py_dg_dtoa to remove trailing zeros
* Add regression test and news entry
* Add explanation about why it's safe to strip trailing zeros
* Make code safer, clean up comments, add change note at top of file
* Nitpick: avoid implicit int-to-float conversion in tests
Previously, the result could have been an instance of a subclass of int.
Also revert bpo-26202 and make attributes start, stop and step of the range
object having exact type int.
Add private function _PyNumber_Index() which preserves the old behavior
of PyNumber_Index() for performance to use it in the conversion functions
like PyLong_AsLong().
This updates _PyErr_ChainStackItem() to use _PyErr_SetObject()
instead of _PyErr_ChainExceptions(). This prevents a hang in
certain circumstances because _PyErr_SetObject() performs checks
to prevent cycles in the exception context chain while
_PyErr_ChainExceptions() doesn't.
When an asyncio.Task is cancelled, the exception traceback now
starts with where the task was first interrupted. Previously,
the traceback only had "depth one."
Clarify the zip built-in docstring.
This puts much simpler text up front along with an example.
As it was, the zip built-in docstring was technically correct. But too
technical for the reader who shouldn't _need_ to know about `__next__` and
`StopIteration` as most people do not need to understand the internal
implementation details of the iterator protocol in their daily life.
This is a documentation only change, intended to be backported to 3.8; it is
only tangentially related to PEP-618 which might offer new behavior options
in the future.
Wording based a bit more on enumerate per Brandt's suggestion.
This gets rid of the legacy wording paragraph which seems too tied to
implementation details of the iterator protocol which isn't relevant here.
Co-authored-by: Brandt Bucher <brandtbucher@gmail.com>
This fixes both the traceback.py module and the C code for formatting syntax errors (in Python/pythonrun.c). They now both consistently do the following:
- Suppress caret if it points left of text
- Allow caret pointing just past end of line
- If caret points past end of line, clip to *just* past end of line
The syntax error formatting code in traceback.py was mostly rewritten; small, subtle changes were applied to the C code in pythonrun.c.
There's still a difference when the text contains embedded newlines. Neither handles these very well, and I don't think the case occurs in practice.
Automerge-Triggered-By: @gvanrossum
_Py_hashtable_get_entry_ptr() avoids comparing the entry hash:
compare directly keys.
Move _Py_hashtable_get_entry_ptr() just after
_Py_hashtable_get_entry_generic().
_Py_hashtable_t values become regular "void *" pointers.
* Add _Py_hashtable_entry_t.data member
* Remove _Py_hashtable_t.data_size member
* Remove _Py_hashtable_t.get_func member. It is no longer needed
to specialize _Py_hashtable_get() for a specific value size, since
all entries now have the same size (void*).
* Remove the following macros:
* _Py_HASHTABLE_GET()
* _Py_HASHTABLE_SET()
* _Py_HASHTABLE_SET_NODATA()
* _Py_HASHTABLE_POP()
* Rename _Py_hashtable_pop() to _Py_hashtable_steal()
* _Py_hashtable_foreach() callback now gets key and value rather than
entry.
* Remove _Py_hashtable_value_destroy_func type. value_destroy_func
callback now only has a single parameter: data (void*).
Rewrite _tracemalloc to store "trace_t*" rather than directly
"trace_t" in traces hash tables. Traces are now allocated on the heap
memory, outside the hash table.
Add tracemalloc_copy_traces() and tracemalloc_copy_domains() helper
functions.
Remove _Py_hashtable_copy() function since there is no API to copy a
key or a value.
Remove also _Py_hashtable_delete() function which was commented.
Rewrite _Py_hashtable_t type to always store the key as
a "const void *" pointer. Add an explicit "key" member to
_Py_hashtable_entry_t.
Remove _Py_hashtable_t.key_size member.
hash and compare functions drop their hash table parameter, and their
'key' parameter type becomes "const void *".
Add a new _Py_HashPointerRaw() function which avoids replacing -1
with -2 to micro-optimize hash table using pointer keys: using
_Py_hashtable_hash_ptr() hash function.
Optimize _Py_hashtable_get() and _Py_hashtable_get_entry() for
pointer keys:
* key_size == sizeof(void*)
* hash_func == _Py_hashtable_hash_ptr
* compare_func == _Py_hashtable_compare_direct
Changes:
* Add get_func and get_entry_func members to _Py_hashtable_t
* Convert _Py_hashtable_get() and _Py_hashtable_get_entry() functions
to static nline functions.
* Add specialized get and get entry for pointer keys.
_Py_hashtable_new() now uses PyMem_Malloc/PyMem_Free allocator by
default, rather than PyMem_RawMalloc/PyMem_RawFree.
PyMem_Malloc is faster than PyMem_RawMalloc for memory blocks smaller
than or equal to 512 bytes.
* Move Modules/hashtable.h to Include/internal/pycore_hashtable.h
* Move Modules/hashtable.c to Python/hashtable.c
* Python is now linked to hashtable.c. _tracemalloc is no longer
linked to hashtable.c. Previously, marshal.c got hashtable.c via
_tracemalloc.c which is built as a builtin module.
In the experimental isolated subinterpreters build mode, the GIL is
now per-interpreter.
Move gil from _PyRuntimeState.ceval to PyInterpreterState.ceval.
new_interpreter() always get the config from the main interpreter.
In the experimental isolated subinterpreters build mode,
_PyThreadState_GET() gets the autoTSSkey variable and
_PyThreadState_Swap() sets the autoTSSkey variable.
* Add _PyThreadState_GetTSS()
* _PyRuntimeState_GetThreadState() and _PyThreadState_GET()
return _PyThreadState_GetTSS()
* PyEval_SaveThread() sets the autoTSSkey variable to current Python
thread state rather than NULL.
* eval_frame_handle_pending() doesn't check that
_PyThreadState_Swap() result is NULL.
* _PyThreadState_Swap() gets the current Python thread state with
_PyThreadState_GetTSS() rather than
_PyRuntimeGILState_GetThreadState().
* PyGILState_Ensure() no longer checks _PyEval_ThreadsInitialized()
since it cannot access the current interpreter.
_PyErr_ChainExceptions() now ensures that the first parameter is an
exception type, as done by _PyErr_SetObject().
* The following function now check PyExceptionInstance_Check() in an
assertion using a new _PyBaseExceptionObject_cast() helper
function:
* PyException_GetTraceback(), PyException_SetTraceback()
* PyException_GetCause(), PyException_SetCause()
* PyException_GetContext(), PyException_SetContext()
* PyExceptionClass_Name() now checks PyExceptionClass_Check() with an
assertion.
* Remove XXX comment and add gi_exc_state variable to _gen_throw().
* Remove comment from test_generators
Move recursion_limit member from _PyRuntimeState.ceval to
PyInterpreterState.ceval.
* Py_SetRecursionLimit() now only sets _Py_CheckRecursionLimit
of ceval.c if the current Python thread is part of the main
interpreter.
* Inline _Py_MakeEndRecCheck() into _Py_LeaveRecursiveCall().
* Convert _Py_RecursionLimitLowerWaterMark() macro into a static
inline function.
Add --with-experimental-isolated-subinterpreters build option to
configure: better isolate subinterpreters, experimental build mode.
When used, force the usage of the libc malloc() memory allocator,
since pymalloc relies on the unique global interpreter lock (GIL).
Due to backwards compatibility concerns regarding keywords immediately followed by a string without whitespace between them (like in `bg="#d00" if clear else"#fca"`) will fail to parse,
commit 41d5b94af4 has to be reverted.
I can add another commit with the new test case I wrote to verify that the warning was being printed before my change, stopped printing after my change, and that the function does not return null after my change.
Automerge-Triggered-By: @brettcannon
Otherwise we leave a dangling pointer to free'd memory. If we
then initialize a new interpreter in the same process and call
PyImport_ExtendInittab, we will (likely) crash when calling
PyMem_RawRealloc(inittab_copy, ...) since the pointer address
is bogus.
Automerge-Triggered-By: @brettcannon
An isolated subinterpreter cannot spawn threads, spawn a child
process or call os.fork().
* Add private _Py_NewInterpreter(isolated_subinterpreter) function.
* Add isolated=True keyword-only parameter to
_xxsubinterpreters.create().
* Allow again os.fork() in "non-isolated" subinterpreters.
This implements full support for # type: <type> comments, # type: ignore <stuff> comments, and the func_type parsing mode for ast.parse() and compile().
Closes https://github.com/we-like-parsers/cpython/issues/95.
(For now, you need to use the master branch of mypy, since another issue unique to 3.9 had to be fixed there, and there's no mypy release yet.)
The only thing missing is `feature_version=N`, which is being tracked in https://github.com/we-like-parsers/cpython/issues/124.
New PyFrame_GetBack() function: get the frame next outer frame.
Replace frame->f_back with PyFrame_GetBack(frame) in most code but
frameobject.c, ceval.c and genobject.c.
Remove the following function from the C API:
* PyAsyncGen_ClearFreeLists()
* PyContext_ClearFreeList()
* PyDict_ClearFreeList()
* PyFloat_ClearFreeList()
* PyFrame_ClearFreeList()
* PyList_ClearFreeList()
* PySet_ClearFreeList()
* PyTuple_ClearFreeList()
Make these functions private, move them to the internal C API and
change their return type to void.
Call explicitly PyGC_Collect() to free all free lists.
Note: PySet_ClearFreeList() did nothing.
PyFrame_GetCode(frame): return a borrowed reference to the frame
code.
Replace frame->f_code with PyFrame_GetCode(frame) in most code,
except in frameobject.c, genobject.c and ceval.c.
Also add PyFrame_GetLineNumber() to the limited C API.
This commit also allows to pass flags to the new parser in all interfaces and fixes a bug in the parser generator that was causing to inline rules with actions, making them disappear.
If _PyCode_InitOpcache() fails in _PyEval_EvalFrameDefault(), use
"goto exit_eval_frame;" rather than "return NULL;" to exit the
function in a consistent state. For example, tstate->frame is now
reset properly.
This is invoked by mypy, using ast.parse(source, "<func_type>", "func_type"). Since the new grammar doesn't yet support the func_type_input start symbol we must use the old compiler in this case to prevent a crash.
https://bugs.python.org/issue40334
* Rename PyConfig.use_peg to _use_peg_parser
* Document PyConfig._use_peg_parser and mark it a deprecated
* Mark -X oldparser option and PYTHONOLDPARSER env var as deprecated
in the documentation.
* Add use_old_parser() and skip_if_new_parser() to test.support
* Remove sys.flags.use_peg: use_old_parser() uses
_testinternalcapi.get_configs() instead.
* Enhance test_embed tests
* subprocess._args_from_interpreter_flags() copies -X oldparser
The constant values of future flags in the __future__ module
is updated in order to prevent collision with compiler flags.
Previously PyCF_ALLOW_TOP_LEVEL_AWAIT was clashing
with CO_FUTURE_DIVISION.
* Replace PY_INT64_T with int64_t
* Replace PY_UINT32_T with uint32_t
* Replace PY_UINT64_T with uint64_t
sha3module.c no longer checks if PY_UINT64_T is defined since it's
always defined and uint64_t is always available on platforms
supported by Python.
Avoid a temporary buffer to create a bytes string: use
PyBytes_FromStringAndSize() to directly allocate a bytes object.
Cleanup also the code: PEP 7 formatting, move variable definitions
closer to where they are used. Fix assertion checking "j" index.
Rename _PyInterpreterState_GET_UNSAFE() to _PyInterpreterState_GET()
for consistency with _PyThreadState_GET() and to have a shorter name
(help to fit into 80 columns).
Add also "assert(tstate != NULL);" to the function.
Don't access PyInterpreterState.config member directly anymore, but
use new functions:
* _PyInterpreterState_GetConfig()
* _PyInterpreterState_SetConfig()
* _Py_GetConfig()
Fix the signal handler: it now always uses the main interpreter,
rather than trying to get the current Python thread state.
The following function now accepts an interpreter, instead of a
Python thread state:
* _PyEval_SignalReceived()
* _Py_ThreadCanHandleSignals()
* _PyEval_AddPendingCall()
* COMPUTE_EVAL_BREAKER()
* SET_GIL_DROP_REQUEST(), RESET_GIL_DROP_REQUEST()
* SIGNAL_PENDING_CALLS(), UNSIGNAL_PENDING_CALLS()
* SIGNAL_PENDING_SIGNALS(), UNSIGNAL_PENDING_SIGNALS()
* SIGNAL_ASYNC_EXC(), UNSIGNAL_ASYNC_EXC()
Py_AddPendingCall() now uses the main interpreter if it fails to the
current Python thread state.
Convert _PyThreadState_GET() and PyInterpreterState_GET_UNSAFE()
macros to static inline functions.
PyInterpreterState_New() is now responsible to create pending calls,
PyInterpreterState_Delete() now deletes pending calls.
* Rename _PyEval_InitThreads() to _PyEval_InitGIL() and rename
_PyEval_InitGIL() to _PyEval_FiniGIL().
* _PyEval_InitState() and PyEval_FiniState() now create and delete
pending calls. _PyEval_InitState() now returns -1 on memory
allocation failure.
* Add init_interp_create_gil() helper function: code shared by
Py_NewInterpreter() and Py_InitializeFromConfig().
* init_interp_create_gil() now also calls _PyEval_FiniGIL(),
_PyEval_InitGIL() and _PyGILState_Init() in subinterpreters, but
these functions now do nothing when called from a subinterpreter.
Add _PyIndex_Check() function to the internal C API: fast inlined
verson of PyIndex_Check().
Add Include/internal/pycore_abstract.h header file.
Replace PyIndex_Check() with _PyIndex_Check() in C files of Objects
and Python subdirectories.
Add a private _at_fork_reinit() method to _thread.Lock,
_thread.RLock, threading.RLock and threading.Condition classes:
reinitialize the lock after fork in the child process; reset the lock
to the unlocked state.
Rename also the private _reset_internal_locks() method of
threading.Event to _at_fork_reinit().
* Add _PyThread_at_fork_reinit() private function. It is excluded
from the limited C API.
* threading.Thread._reset_internal_locks() now calls
_at_fork_reinit() on self._tstate_lock rather than creating a new
Python lock object.
The _PyErr_WarnUnawaitedCoroutine() fallback now also sets the
coroutine object as the source of the warning, as done by the Python
implementation warnings._warn_unawaited_coroutine().
Moreover, don't truncate the coroutine name: Python supports
arbitrary string length to format the message.
Add _PySys_Audit() function to the internal C API: similar to
PySys_Audit(), but requires a mandatory tstate parameter.
Cleanup sys_audit_tstate() code: remove code path for NULL tstate,
since the function exits at entry if tstate is NULL. Remove also code
path for NULL tstate->interp: should_audit() now ensures that it is
not NULL (even if tstate->interp cannot be NULL in practice).
PySys_AddAuditHook() now checks if tstate is not NULL to decide if
tstate can be used or not, and tstate is set to NULL if the runtime
is not initialized yet.
Use _PySys_Audit() in sysmodule.c.
Remove two unused imports: _thread and _weakref. Avoid creating a new
winreg builtin module if it's already available in sys.modules.
The winreg module is now stored as "winreg" rather than "_winreg".
PyThreadState.frame is a borrowed reference, not a strong reference:
PyThreadState_Clear() must not call Py_CLEAR(tstate->frame).
Remove test_threading.test_warnings_at_exit(): we cannot warranty
that the Python thread state of daemon threads is cleared in a
reliable way during Python shutdown.
* Re-add removed classes Suite, slice, Param, AugLoad and AugStore.
* Add docstrings for dummy classes.
* Add docstrings for attribute aliases.
* Set __module__ to "ast" instead of "_ast".
* bpo-22490: Remove "__PYVENV_LAUNCHER__" from the shell environment on macOS
This changeset removes the environment varialbe "__PYVENV_LAUNCHER__"
during interpreter launch as it is only needed to communicate between
the stub executable in framework installs and the actual interpreter.
Leaving the environment variable present may lead to misbehaviour when
launching other scripts.
* Actually commit the changes for issue 22490...
* Correct typo
Co-Authored-By: Nicola Soranzo <nicola.soranzo@gmail.com>
* Run make patchcheck
Co-authored-by: Jason R. Coombs <jaraco@jaraco.com>
Co-authored-by: Nicola Soranzo <nicola.soranzo@gmail.com>
Remove _PyRuntime.getframe hook and remove _PyThreadState_GetFrame
macro which was an alias to _PyRuntime.getframe. They were only
exposed by the internal C API. Remove also PyThreadFrameGetter type.
If a thread different than the main thread schedules a pending call
(Py_AddPendingCall()), the bytecode evaluation loop is no longer
interrupted at each bytecode instruction to check for pending calls
which cannot be executed. Only the main thread can execute pending
calls.
Previously, the bytecode evaluation loop was interrupted at each
instruction until the main thread executes pending calls.
* Add _Py_ThreadCanHandlePendingCalls() function.
* SIGNAL_PENDING_CALLS() now only sets eval_breaker to 1 if the
current thread can execute pending calls. Only the main thread can
execute pending calls.
COMPUTE_EVAL_BREAKER() now also checks if the Python thread state
belongs to the main interpreter. Don't break the evaluation loop if
there are pending signals but the Python thread state it belongs to a
subinterpeter.
* Add _Py_IsMainThread() function.
* Add _Py_ThreadCanHandleSignals() function.
If a thread different than the main thread gets a signal, the
bytecode evaluation loop is no longer interrupted at each bytecode
instruction to check for pending signals which cannot be handled.
Only the main thread of the main interpreter can handle signals.
Previously, the bytecode evaluation loop was interrupted at each
instruction until the main thread handles signals.
Changes:
* COMPUTE_EVAL_BREAKER() and SIGNAL_PENDING_SIGNALS() no longer set
eval_breaker to 1 if the current thread cannot handle signals.
* take_gil() now always recomputes eval_breaker.
If Py_AddPendingCall() is called in a subinterpreter, the function is
now scheduled to be called from the subinterpreter, rather than being
called from the main interpreter.
Each subinterpreter now has its own list of scheduled calls.
* Move pending and eval_breaker fields from _PyRuntimeState.ceval
to PyInterpreterState.ceval.
* new_interpreter() now calls _PyEval_InitThreads() to create
pending calls lock.
* Fix Py_AddPendingCall() for subinterpreters. It now calls
_PyThreadState_GET() which works in a subinterpreter if the
caller holds the GIL, and only falls back on
PyGILState_GetThisThreadState() if _PyThreadState_GET()
returns NULL.
Do not apply AST-based optimizations if 'from __future__ import annotations' is used in order to
prevent information lost in the final version of the annotations.
bpo-37127, bpo-39984:
* trip_signal() and Py_AddPendingCall() now get the current Python
thread state using PyGILState_GetThisThreadState() rather than
_PyRuntimeState_GetThreadState() to be able to get it even if the
GIL is released.
* _PyEval_SignalReceived() now expects tstate rather than ceval.
* Remove ceval parameter of _PyEval_AddPendingCall(): ceval is now
get from tstate parameter.
* _PyThreadState_DeleteCurrent() now takes tstate rather than
runtime.
* Add ensure_tstate_not_null() helper to pystate.c.
* Add _PyEval_ReleaseLock() function.
* _PyThreadState_DeleteCurrent() now calls
_PyEval_ReleaseLock(tstate) and frees PyThreadState memory after
this call, not before.
* PyGILState_Release(): rename "tcur" variable to "tstate".
* Rename _PyInterpreterState_Get() to PyInterpreterState_Get() and
move it the limited C API.
* Add _PyInterpreterState_Get() alias to PyInterpreterState_Get() for
backward compatibility with Python 3.8.
Replace _PyInterpreterState_Get() function call with
_PyInterpreterState_GET_UNSAFE() macro which is more efficient but
don't check if tstate or interp is NULL.
_Py_GetConfigsAsDict() now uses _PyThreadState_GET().
* sys.settrace(), sys.setprofile() and _lsprof.Profiler.enable() now
properly report PySys_Audit() error if "sys.setprofile" or
"sys.settrace" audit event is denied.
* Add _PyEval_SetProfile() and _PyEval_SetTrace() function: similar
to PyEval_SetProfile() and PyEval_SetTrace() but take a tstate
parameter and return -1 on error.
* Add _PyObject_FastCallTstate() function.
PyInterpreterState.eval_frame function now requires a tstate (Python
thread state) parameter.
Add private functions to the C API to get and set the frame
evaluation function:
* Add tstate parameter to _PyFrameEvalFunction function type.
* Add _PyInterpreterState_GetEvalFrameFunc() and
_PyInterpreterState_SetEvalFrameFunc() functions.
* Add tstate parameter to _PyEval_EvalFrameDefault().
The 32-bit (49-day) TickCount relied on in EnterNonRecursiveMutex can overflow
in the gap between the 'target' time and the 'now' time WaitForSingleObjectEx
returns, causing the loop to think it needs to wait another 49 days. This is
most likely to happen when the machine is hibernated during
WaitForSingleObjectEx.
This makes acquiring a lock/event/etc from the _thread or threading module
appear to never timeout.
Replace with GetTickCount64 - this is OK now Python no longer supports XP which
lacks it, and is in use for time.monotonic().
Co-authored-by: And Clover <and.clover@bromium.com>
* Remove the slice type.
* Make Slice a kind of the expr type instead of the slice type.
* Replace ExtSlice(slices) with Tuple(slices, Load()).
* Replace Index(value) with a value itself.
All non-terminal nodes in AST for expressions are now of the expr type.