bpo-41513: Improve speed and accuracy of math.hypot() (GH-21803)

This commit is contained in:
Raymond Hettinger 2020-08-15 19:38:19 -07:00 committed by GitHub
parent 39dab24621
commit fff3c28052
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 44 additions and 6 deletions

View File

@ -795,7 +795,8 @@ class MathTests(unittest.TestCase):
# Verify scaling for extremely large values
fourthmax = FLOAT_MAX / 4.0
for n in range(32):
self.assertEqual(hypot(*([fourthmax]*n)), fourthmax * math.sqrt(n))
self.assertTrue(math.isclose(hypot(*([fourthmax]*n)),
fourthmax * math.sqrt(n)))
# Verify scaling for extremely small values
for exp in range(32):
@ -904,8 +905,8 @@ class MathTests(unittest.TestCase):
for n in range(32):
p = (fourthmax,) * n
q = (0.0,) * n
self.assertEqual(dist(p, q), fourthmax * math.sqrt(n))
self.assertEqual(dist(q, p), fourthmax * math.sqrt(n))
self.assertTrue(math.isclose(dist(p, q), fourthmax * math.sqrt(n)))
self.assertTrue(math.isclose(dist(q, p), fourthmax * math.sqrt(n)))
# Verify scaling for extremely small values
for exp in range(32):

View File

@ -0,0 +1,2 @@
Minor algorithmic improvement to math.hypot() and math.dist() giving small
gains in speed and accuracy.

View File

@ -2406,6 +2406,13 @@ math_fmod_impl(PyObject *module, double x, double y)
/*
Given an *n* length *vec* of values and a value *max*, compute:
sqrt(sum((x * scale) ** 2 for x in vec)) / scale
where scale is the first power of two
greater than max.
or compute:
max * sqrt(sum((x / max) ** 2 for x in vec))
The value of the *max* variable must be non-negative and
@ -2425,19 +2432,25 @@ The *csum* variable tracks the cumulative sum and *frac* tracks
the cumulative fractional errors at each step. Since this
variant assumes that |csum| >= |x| at each step, we establish
the precondition by starting the accumulation from 1.0 which
represents the largest possible value of (x/max)**2.
represents the largest possible value of (x*scale)**2 or (x/max)**2.
After the loop is finished, the initial 1.0 is subtracted out
for a net zero effect on the final sum. Since *csum* will be
greater than 1.0, the subtraction of 1.0 will not cause
fractional digits to be dropped from *csum*.
To get the full benefit from compensated summation, the
largest addend should be in the range: 0.5 <= x <= 1.0.
Accordingly, scaling or division by *max* should not be skipped
even if not otherwise needed to prevent overflow or loss of precision.
*/
static inline double
vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
{
double x, csum = 1.0, oldcsum, frac = 0.0;
double x, csum = 1.0, oldcsum, frac = 0.0, scale;
int max_e;
Py_ssize_t i;
if (Py_IS_INFINITY(max)) {
@ -2449,14 +2462,36 @@ vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
if (max == 0.0 || n <= 1) {
return max;
}
frexp(max, &max_e);
if (max_e >= -1023) {
scale = ldexp(1.0, -max_e);
assert(max * scale >= 0.5);
assert(max * scale < 1.0);
for (i=0 ; i < n ; i++) {
x = vec[i];
assert(Py_IS_FINITE(x) && fabs(x) <= max);
x *= scale;
x = x*x;
assert(x <= 1.0);
assert(csum >= x);
oldcsum = csum;
csum += x;
frac += (oldcsum - csum) + x;
}
return sqrt(csum - 1.0 + frac) / scale;
}
/* When max_e < -1023, ldexp(1.0, -max_e) overflows.
So instead of multiplying by a scale, we just divide by *max*.
*/
for (i=0 ; i < n ; i++) {
x = vec[i];
assert(Py_IS_FINITE(x) && fabs(x) <= max);
x /= max;
x = x*x;
assert(x <= 1.0);
assert(csum >= x);
oldcsum = csum;
csum += x;
assert(csum >= x);
frac += (oldcsum - csum) + x;
}
return max * sqrt(csum - 1.0 + frac);