Create a primer section for the descriptor howto guide (GH-22906) (GH0-22918)

This commit is contained in:
Miss Skeleton (bot) 2020-10-23 13:49:32 -07:00 committed by GitHub
parent 69479ecfa8
commit f8d96b98a4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 499 additions and 59 deletions

View File

@ -301,7 +301,8 @@ Glossary
including functions, methods, properties, class methods, static methods,
and reference to super classes.
For more information about descriptors' methods, see :ref:`descriptors`.
For more information about descriptors' methods, see :ref:`descriptors`
or the :ref:`Descriptor How To Guide <descriptorhowto>`.
dictionary
An associative array, where arbitrary keys are mapped to values. The

View File

@ -1,3 +1,5 @@
.. _descriptorhowto:
======================
Descriptor HowTo Guide
======================
@ -7,6 +9,415 @@ Descriptor HowTo Guide
.. Contents::
:term:`Descriptors <descriptor>` let objects customize attribute lookup,
storage, and deletion.
This HowTo guide has three major sections:
1) The "primer" gives a basic overview, moving gently from simple examples,
adding one feature at a time. It is a great place to start.
2) The second section shows a complete, practical descriptor example. If you
already know the basics, start there.
3) The third section provides a more technical tutorial that goes into the
detailed mechanics of how descriptors work. Most people don't need this
level of detail.
Primer
^^^^^^
In this primer, we start with most basic possible example and then we'll add
new capabilities one by one.
Simple example: A descriptor that returns a constant
----------------------------------------------------
The :class:`Ten` class is a descriptor that always returns the constant ``10``::
class Ten:
def __get__(self, obj, objtype=None):
return 10
To use the descriptor, it must be stored as a class variable in another class::
class A:
x = 5 # Regular class attribute
y = Ten() # Descriptor
An interactive session shows the difference between normal attribute lookup
and descriptor lookup::
>>> a = A() # Make an instance of class A
>>> a.x # Normal attribute lookup
5
>>> a.y # Descriptor lookup
10
In the ``a.x`` attribute lookup, the dot operator finds the value ``5`` stored
in the class dictionary. In the ``a.y`` descriptor lookup, the dot operator
calls the descriptor's :meth:`__get__()` method. That method returns ``10``.
Note that the value ``10`` is not stored in either the class dictionary or the
instance dictionary. Instead, the value ``10`` is computed on demand.
This example shows how a simple descriptor works, but it isn't very useful.
For retrieving constants, normal attribute lookup would be better.
In the next section, we'll create something more useful, a dynamic lookup.
Dynamic lookups
---------------
Interesting descriptors typically run computations instead of doing lookups::
import os
class DirectorySize:
def __get__(self, obj, objtype=None):
return len(os.listdir(obj.dirname))
class Directory:
size = DirectorySize() # Descriptor
def __init__(self, dirname):
self.dirname = dirname # Regular instance attribute
An interactive session shows that the lookup is dynamic — it computes
different, updated answers each time::
>>> g = Directory('games')
>>> s = Directory('songs')
>>> g.size # The games directory has three files
3
>>> os.system('touch games/newfile') # Add a fourth file to the directory
0
>>> g.size
4
>>> s.size # The songs directory has twenty files
20
Besides showing how descriptors can run computations, this example also
reveals the purpose of the parameters to :meth:`__get__`. The *self*
parameter is *size*, an instance of *DirectorySize*. The *obj* parameter is
either *g* or *s*, an instance of *Directory*. It is *obj* parameter that
lets the :meth:`__get__` method learn the target directory. The *objtype*
parameter is the class *Directory*.
Managed attributes
------------------
A popular use for descriptors is managing access to instance data. The
descriptor is assigned to a public attribute in the class dictionary while the
actual data is stored as a private attribute in the instance dictionary. The
descriptor's :meth:`__get__` and :meth:`__set__` methods are triggered when
the public attribute is accessed.
In the following example, *age* is the public attribute and *_age* is the
private attribute. When the public attribute is accessed, the descriptor logs
the lookup or update::
import logging
logging.basicConfig(level=logging.INFO)
class LoggedAgeAccess:
def __get__(self, obj, objtype=None):
value = obj._age
logging.info('Accessing %r giving %r', 'age', value)
return value
def __set__(self, obj, value):
logging.info('Updating %r to %r', 'age', value)
obj._age = value
class Person:
age = LoggedAgeAccess() # Descriptor
def __init__(self, name, age):
self.name = name # Regular instance attribute
self.age = age # Calls the descriptor
def birthday(self):
self.age += 1 # Calls both __get__() and __set__()
An interactive session shows that all access to the managed attribute *age* is
logged, but that the regular attribute *name* is not logged::
>>> mary = Person('Mary M', 30) # The initial age update is logged
INFO:root:Updating 'age' to 30
>>> dave = Person('David D', 40)
INFO:root:Updating 'age' to 40
>>> vars(mary) # The actual data is in a private attribute
{'name': 'Mary M', '_age': 30}
>>> vars(dave)
{'name': 'David D', '_age': 40}
>>> mary.age # Access the data and log the lookup
INFO:root:Accessing 'age' giving 30
30
>>> mary.birthday() # Updates are logged as well
INFO:root:Accessing 'age' giving 30
INFO:root:Updating 'age' to 31
>>> dave.name # Regular attribute lookup isn't logged
'David D'
>>> dave.age # Only the managed attribute is logged
INFO:root:Accessing 'age' giving 40
40
One major issue with this example is the private name *_age* is hardwired in
the *LoggedAgeAccess* class. That means that each instance can only have one
logged attribute and that its name is unchangeable. In the next example,
we'll fix that problem.
Customized Names
----------------
When a class uses descriptors, it can inform each descriptor about what
variable name was used.
In this example, the :class:`Person` class has two descriptor instances,
*name* and *age*. When the :class:`Person` class is defined, it makes a
callback to :meth:`__set_name__` in *LoggedAccess* so that the field names can
be recorded, giving each descriptor its own *public_name* and *private_name*::
import logging
logging.basicConfig(level=logging.INFO)
class LoggedAccess:
def __set_name__(self, owner, name):
self.public_name = name
self.private_name = f'_{name}'
def __get__(self, obj, objtype=None):
value = getattr(obj, self.private_name)
logging.info('Accessing %r giving %r', self.public_name, value)
return value
def __set__(self, obj, value):
logging.info('Updating %r to %r', self.public_name, value)
setattr(obj, self.private_name, value)
class Person:
name = LoggedAccess() # First descriptor
age = LoggedAccess() # Second descriptor
def __init__(self, name, age):
self.name = name # Calls the first descriptor
self.age = age # Calls the second descriptor
def birthday(self):
self.age += 1
An interactive session shows that the :class:`Person` class has called
:meth:`__set_name__` so that the field names would be recorded. Here
we call :func:`vars` to lookup the descriptor without triggering it::
>>> vars(vars(Person)['name'])
{'public_name': 'name', 'private_name': '_name'}
>>> vars(vars(Person)['age'])
{'public_name': 'age', 'private_name': '_age'}
The new class now logs access to both *name* and *age*::
>>> pete = Person('Peter P', 10)
INFO:root:Updating 'name' to 'Peter P'
INFO:root:Updating 'age' to 10
>>> kate = Person('Catherine C', 20)
INFO:root:Updating 'name' to 'Catherine C'
INFO:root:Updating 'age' to 20
The two *Person* instances contain only the private names::
>>> vars(pete)
{'_name': 'Peter P', '_age': 10}
>>> vars(kate)
{'_name': 'Catherine C', '_age': 20}
Closing thoughts
----------------
A :term:`descriptor` is what we call any object that defines :meth:`__get__`,
:meth:`__set__`, or :meth:`__delete__`.
Descriptors get invoked by the dot operator during attribute lookup. If a
descriptor is accessed indirectly with ``vars(some_class)[descriptor_name]``,
the descriptor instance is returned without invoking it.
Descriptors only work when used as class variables. When put in instances,
they have no effect.
The main motivation for descriptors is to provide a hook allowing objects
stored in class variables to control what happens during dotted lookup.
Traditionally, the calling class controls what happens during lookup.
Descriptors invert that relationship and allow the data being looked-up to
have a say in the matter.
Descriptors are used throughout the language. It is how functions turn into
bound methods. Common tools like :func:`classmethod`, :func:`staticmethod`,
:func:`property`, and :func:`functools.cached_property` are all implemented as
descriptors.
Complete Practical Example
^^^^^^^^^^^^^^^^^^^^^^^^^^
In this example, we create a practical and powerful tool for locating
notoriously hard to find data corruption bugs.
Validator class
---------------
A validator is a descriptor for managed attribute access. Prior to storing
any data, it verifies that the new value meets various type and range
restrictions. If those restrictions aren't met, it raises an exception to
prevents data corruption at its source.
This :class:`Validator` class is both an :term:`abstract base class` and a
managed attribute descriptor::
from abc import ABC, abstractmethod
class Validator(ABC):
def __set_name__(self, owner, name):
self.private_name = f'_{name}'
def __get__(self, obj, objtype=None):
return getattr(obj, self.private_name)
def __set__(self, obj, value):
self.validate(value)
setattr(obj, self.private_name, value)
@abstractmethod
def validate(self, value):
pass
Custom validators need to subclass from :class:`Validator` and supply a
:meth:`validate` method to test various restrictions as needed.
Custom validators
-----------------
Here are three practical data validation utilities:
1) :class:`OneOf` verifies that a value is one of a restricted set of options.
2) :class:`Number` verifies that a value is either an :class:`int` or
:class:`float`. Optionally, it verifies that a value is between a given
minimum or maximum.
3) :class:`String` verifies that a value is a :class:`str`. Optionally, it
validates a given minimum or maximum length. Optionally, it can test for
another predicate as well.
::
class OneOf(Validator):
def __init__(self, *options):
self.options = set(options)
def validate(self, value):
if value not in self.options:
raise ValueError(f'Expected {value!r} to be one of {self.options!r}')
class Number(Validator):
def __init__(self, minvalue=None, maxvalue=None):
self.minvalue = minvalue
self.maxvalue = maxvalue
def validate(self, value):
if not isinstance(value, (int, float)):
raise TypeError(f'Expected {value!r} to be an int or float')
if self.minvalue is not None and value < self.minvalue:
raise ValueError(
f'Expected {value!r} to be at least {self.minvalue!r}'
)
if self.maxvalue is not None and value > self.maxvalue:
raise ValueError(
f'Expected {value!r} to be no more than {self.maxvalue!r}'
)
class String(Validator):
def __init__(self, minsize=None, maxsize=None, predicate=None):
self.minsize = minsize
self.maxsize = maxsize
self.predicate = predicate
def validate(self, value):
if not isinstance(value, str):
raise TypeError(f'Expected {value!r} to be an str')
if self.minsize is not None and len(value) < self.minsize:
raise ValueError(
f'Expected {value!r} to be no smaller than {self.minsize!r}'
)
if self.maxsize is not None and len(value) > self.maxsize:
raise ValueError(
f'Expected {value!r} to be no bigger than {self.maxsize!r}'
)
if self.predicate is not None and not self.predicate(value):
raise ValueError(
f'Expected {self.predicate} to be true for {value!r}'
)
Practical use
-------------
Here's how the data validators can be used in a real class::
class Component:
name = String(minsize=3, maxsize=10, predicate=str.isupper)
kind = OneOf('plastic', 'metal')
quantity = Number(minvalue=0)
def __init__(self, name, kind, quantity):
self.name = name
self.kind = kind
self.quantity = quantity
The descriptors prevent invalid instances from being created::
Component('WIDGET', 'metal', 5) # Allowed.
Component('Widget', 'metal', 5) # Blocked: 'Widget' is not all uppercase
Component('WIDGET', 'metle', 5) # Blocked: 'metle' is misspelled
Component('WIDGET', 'metal', -5) # Blocked: -5 is negative
Component('WIDGET', 'metal', 'V') # Blocked: 'V' isn't a number
Technical Tutorial
^^^^^^^^^^^^^^^^^^
What follows is a more technical tutorial for the mechanics and details of how
descriptors work.
Abstract
--------
@ -39,10 +450,10 @@ Where this occurs in the precedence chain depends on which descriptor methods
were defined.
Descriptors are a powerful, general purpose protocol. They are the mechanism
behind properties, methods, static methods, class methods, and :func:`super()`.
They are used throughout Python itself to implement the new style classes
introduced in version 2.2. Descriptors simplify the underlying C-code and offer
a flexible set of new tools for everyday Python programs.
behind properties, methods, static methods, class methods, and
:func:`super()`. They are used throughout Python itself. Descriptors
simplify the underlying C code and offer a flexible set of new tools for
everyday Python programs.
Descriptor Protocol
@ -132,11 +543,29 @@ The implementation details are in :c:func:`super_getattro()` in
The details above show that the mechanism for descriptors is embedded in the
:meth:`__getattribute__()` methods for :class:`object`, :class:`type`, and
:func:`super`. Classes inherit this machinery when they derive from
:class:`object` or if they have a meta-class providing similar functionality.
:class:`object` or if they have a metaclass providing similar functionality.
Likewise, classes can turn-off descriptor invocation by overriding
:meth:`__getattribute__()`.
Automatic Name Notification
---------------------------
Sometimes it is desirable for a descriptor to know what class variable name it
was assigned to. When a new class is created, the :class:`type` metaclass
scans the dictionary of the new class. If any of the entries are descriptors
and if they define :meth:`__set_name__`, that method is called with two
arguments. The *owner* is the class where the descriptor is used, the *name*
is class variable the descriptor was assigned to.
The implementation details are in :c:func:`type_new()` and
:c:func:`set_names()` in :source:`Objects/typeobject.c`.
Since the update logic is in :meth:`type.__new__`, notifications only take
place at the time of class creation. If descriptors are added to the class
afterwards, :meth:`__set_name__` will need to be called manually.
Descriptor Example
------------------
@ -154,7 +583,7 @@ descriptor is useful for monitoring just a few chosen attributes::
self.val = initval
self.name = name
def __get__(self, obj, objtype):
def __get__(self, obj, objtype=None):
print('Retrieving', self.name)
return self.val
@ -162,11 +591,11 @@ descriptor is useful for monitoring just a few chosen attributes::
print('Updating', self.name)
self.val = val
>>> class MyClass:
... x = RevealAccess(10, 'var "x"')
... y = 5
...
>>> m = MyClass()
class B:
x = RevealAccess(10, 'var "x"')
y = 5
>>> m = B()
>>> m.x
Retrieving var "x"
10
@ -251,12 +680,13 @@ affect existing client code accessing the attribute directly. The solution is
to wrap access to the value attribute in a property data descriptor::
class Cell:
. . .
def getvalue(self):
...
@property
def value(self):
"Recalculate the cell before returning value"
self.recalc()
return self._value
value = property(getvalue)
Functions and Methods
@ -278,42 +708,48 @@ non-data descriptors which return bound methods when they are invoked from an
object. In pure Python, it works like this::
class Function:
. . .
...
def __get__(self, obj, objtype=None):
"Simulate func_descr_get() in Objects/funcobject.c"
if obj is None:
return self
return types.MethodType(self, obj)
Running the interpreter shows how the function descriptor works in practice::
Running the following in class in the interpreter shows how the function
descriptor works in practice::
>>> class D:
... def f(self, x):
... return x
...
>>> d = D()
class D:
def f(self, x):
return x
Access through the class dictionary does not invoke :meth:`__get__`. Instead,
it just returns the underlying function object::
# Access through the class dictionary does not invoke __get__.
# It just returns the underlying function object.
>>> D.__dict__['f']
<function D.f at 0x00C45070>
# Dotted access from a class calls __get__() which just returns
# the underlying function unchanged.
Dotted access from a class calls :meth:`__get__` which just returns the
underlying function unchanged::
>>> D.f
<function D.f at 0x00C45070>
# The function has a __qualname__ attribute to support introspection
The function has a :term:`qualified name` attribute to support introspection::
>>> D.f.__qualname__
'D.f'
# Dotted access from an instance calls __get__() which returns the
# function wrapped in a bound method object
Dotted access from an instance calls :meth:`__get__` which returns a bound
method object::
>>> d = D()
>>> d.f
<bound method D.f of <__main__.D object at 0x00B18C90>>
# Internally, the bound method stores the underlying function and
# the bound instance.
Internally, the bound method stores the underlying function and the bound
instance::
>>> d.f.__func__
<function D.f at 0x1012e5ae8>
>>> d.f.__self__
@ -328,20 +764,20 @@ patterns of binding functions into methods.
To recap, functions have a :meth:`__get__` method so that they can be converted
to a method when accessed as attributes. The non-data descriptor transforms an
``obj.f(*args)`` call into ``f(obj, *args)``. Calling ``klass.f(*args)``
``obj.f(*args)`` call into ``f(obj, *args)``. Calling ``cls.f(*args)``
becomes ``f(*args)``.
This chart summarizes the binding and its two most useful variants:
+-----------------+----------------------+------------------+
| Transformation | Called from an | Called from a |
| | Object | Class |
| | object | class |
+=================+======================+==================+
| function | f(obj, \*args) | f(\*args) |
+-----------------+----------------------+------------------+
| staticmethod | f(\*args) | f(\*args) |
+-----------------+----------------------+------------------+
| classmethod | f(type(obj), \*args) | f(klass, \*args) |
| classmethod | f(type(obj), \*args) | f(cls, \*args) |
+-----------------+----------------------+------------------+
Static methods return the underlying function without changes. Calling either
@ -365,11 +801,11 @@ It can be called either from an object or the class: ``s.erf(1.5) --> .9332`` o
Since staticmethods return the underlying function with no changes, the example
calls are unexciting::
>>> class E:
... def f(x):
... print(x)
... f = staticmethod(f)
...
class E:
@staticmethod
def f(x):
print(x)
>>> E.f(3)
3
>>> E().f(3)
@ -391,32 +827,33 @@ Unlike static methods, class methods prepend the class reference to the
argument list before calling the function. This format is the same
for whether the caller is an object or a class::
>>> class E:
... def f(klass, x):
... return klass.__name__, x
... f = classmethod(f)
...
>>> print(E.f(3))
('E', 3)
>>> print(E().f(3))
('E', 3)
class F:
@classmethod
def f(cls, x):
return cls.__name__, x
>>> print(F.f(3))
('F', 3)
>>> print(F().f(3))
('F', 3)
This behavior is useful whenever the function only needs to have a class
reference and does not care about any underlying data. One use for classmethods
is to create alternate class constructors. In Python 2.3, the classmethod
reference and does not care about any underlying data. One use for
classmethods is to create alternate class constructors. The classmethod
:func:`dict.fromkeys` creates a new dictionary from a list of keys. The pure
Python equivalent is::
class Dict:
. . .
def fromkeys(klass, iterable, value=None):
...
@classmethod
def fromkeys(cls, iterable, value=None):
"Emulate dict_fromkeys() in Objects/dictobject.c"
d = klass()
d = cls()
for key in iterable:
d[key] = value
return d
fromkeys = classmethod(fromkeys)
Now a new dictionary of unique keys can be constructed like this::
@ -432,10 +869,9 @@ Using the non-data descriptor protocol, a pure Python version of
def __init__(self, f):
self.f = f
def __get__(self, obj, klass=None):
if klass is None:
klass = type(obj)
def __get__(self, obj, cls=None):
if cls is None:
cls = type(obj)
def newfunc(*args):
return self.f(klass, *args)
return self.f(cls, *args)
return newfunc

View File

@ -23,6 +23,9 @@ howto/curses,,:blue,"2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white.
howto/curses,,:magenta,"2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The"
howto/curses,,:cyan,"2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The"
howto/curses,,:white,"2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The"
howto/descriptor,,:root,"INFO:root"
howto/descriptor,,:Updating,"root:Updating"
howto/descriptor,,:Accessing,"root:Accessing"
howto/instrumentation,,::,python$target:::function-entry
howto/instrumentation,,:function,python$target:::function-entry
howto/instrumentation,,::,python$target:::function-return

1 c-api/arg :ref PyArg_ParseTuple(args, "O|O:ref", &object, &callback)
23 howto/curses :magenta 2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The
24 howto/curses :cyan 2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The
25 howto/curses :white 2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The
26 howto/descriptor :root INFO:root
27 howto/descriptor :Updating root:Updating
28 howto/descriptor :Accessing root:Accessing
29 howto/instrumentation :: python$target:::function-entry
30 howto/instrumentation :function python$target:::function-entry
31 howto/instrumentation :: python$target:::function-return