Create a primer section for the descriptor howto guide (GH-22906) (GH0-22918)
This commit is contained in:
parent
69479ecfa8
commit
f8d96b98a4
|
@ -301,7 +301,8 @@ Glossary
|
|||
including functions, methods, properties, class methods, static methods,
|
||||
and reference to super classes.
|
||||
|
||||
For more information about descriptors' methods, see :ref:`descriptors`.
|
||||
For more information about descriptors' methods, see :ref:`descriptors`
|
||||
or the :ref:`Descriptor How To Guide <descriptorhowto>`.
|
||||
|
||||
dictionary
|
||||
An associative array, where arbitrary keys are mapped to values. The
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
.. _descriptorhowto:
|
||||
|
||||
======================
|
||||
Descriptor HowTo Guide
|
||||
======================
|
||||
|
@ -7,6 +9,415 @@ Descriptor HowTo Guide
|
|||
|
||||
.. Contents::
|
||||
|
||||
|
||||
:term:`Descriptors <descriptor>` let objects customize attribute lookup,
|
||||
storage, and deletion.
|
||||
|
||||
This HowTo guide has three major sections:
|
||||
|
||||
1) The "primer" gives a basic overview, moving gently from simple examples,
|
||||
adding one feature at a time. It is a great place to start.
|
||||
|
||||
2) The second section shows a complete, practical descriptor example. If you
|
||||
already know the basics, start there.
|
||||
|
||||
3) The third section provides a more technical tutorial that goes into the
|
||||
detailed mechanics of how descriptors work. Most people don't need this
|
||||
level of detail.
|
||||
|
||||
|
||||
Primer
|
||||
^^^^^^
|
||||
|
||||
In this primer, we start with most basic possible example and then we'll add
|
||||
new capabilities one by one.
|
||||
|
||||
|
||||
Simple example: A descriptor that returns a constant
|
||||
----------------------------------------------------
|
||||
|
||||
The :class:`Ten` class is a descriptor that always returns the constant ``10``::
|
||||
|
||||
|
||||
class Ten:
|
||||
def __get__(self, obj, objtype=None):
|
||||
return 10
|
||||
|
||||
To use the descriptor, it must be stored as a class variable in another class::
|
||||
|
||||
class A:
|
||||
x = 5 # Regular class attribute
|
||||
y = Ten() # Descriptor
|
||||
|
||||
An interactive session shows the difference between normal attribute lookup
|
||||
and descriptor lookup::
|
||||
|
||||
>>> a = A() # Make an instance of class A
|
||||
>>> a.x # Normal attribute lookup
|
||||
5
|
||||
>>> a.y # Descriptor lookup
|
||||
10
|
||||
|
||||
In the ``a.x`` attribute lookup, the dot operator finds the value ``5`` stored
|
||||
in the class dictionary. In the ``a.y`` descriptor lookup, the dot operator
|
||||
calls the descriptor's :meth:`__get__()` method. That method returns ``10``.
|
||||
Note that the value ``10`` is not stored in either the class dictionary or the
|
||||
instance dictionary. Instead, the value ``10`` is computed on demand.
|
||||
|
||||
This example shows how a simple descriptor works, but it isn't very useful.
|
||||
For retrieving constants, normal attribute lookup would be better.
|
||||
|
||||
In the next section, we'll create something more useful, a dynamic lookup.
|
||||
|
||||
|
||||
Dynamic lookups
|
||||
---------------
|
||||
|
||||
Interesting descriptors typically run computations instead of doing lookups::
|
||||
|
||||
|
||||
import os
|
||||
|
||||
class DirectorySize:
|
||||
|
||||
def __get__(self, obj, objtype=None):
|
||||
return len(os.listdir(obj.dirname))
|
||||
|
||||
class Directory:
|
||||
|
||||
size = DirectorySize() # Descriptor
|
||||
|
||||
def __init__(self, dirname):
|
||||
self.dirname = dirname # Regular instance attribute
|
||||
|
||||
An interactive session shows that the lookup is dynamic — it computes
|
||||
different, updated answers each time::
|
||||
|
||||
>>> g = Directory('games')
|
||||
>>> s = Directory('songs')
|
||||
>>> g.size # The games directory has three files
|
||||
3
|
||||
>>> os.system('touch games/newfile') # Add a fourth file to the directory
|
||||
0
|
||||
>>> g.size
|
||||
4
|
||||
>>> s.size # The songs directory has twenty files
|
||||
20
|
||||
|
||||
Besides showing how descriptors can run computations, this example also
|
||||
reveals the purpose of the parameters to :meth:`__get__`. The *self*
|
||||
parameter is *size*, an instance of *DirectorySize*. The *obj* parameter is
|
||||
either *g* or *s*, an instance of *Directory*. It is *obj* parameter that
|
||||
lets the :meth:`__get__` method learn the target directory. The *objtype*
|
||||
parameter is the class *Directory*.
|
||||
|
||||
|
||||
Managed attributes
|
||||
------------------
|
||||
|
||||
A popular use for descriptors is managing access to instance data. The
|
||||
descriptor is assigned to a public attribute in the class dictionary while the
|
||||
actual data is stored as a private attribute in the instance dictionary. The
|
||||
descriptor's :meth:`__get__` and :meth:`__set__` methods are triggered when
|
||||
the public attribute is accessed.
|
||||
|
||||
In the following example, *age* is the public attribute and *_age* is the
|
||||
private attribute. When the public attribute is accessed, the descriptor logs
|
||||
the lookup or update::
|
||||
|
||||
import logging
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
class LoggedAgeAccess:
|
||||
|
||||
def __get__(self, obj, objtype=None):
|
||||
value = obj._age
|
||||
logging.info('Accessing %r giving %r', 'age', value)
|
||||
return value
|
||||
|
||||
def __set__(self, obj, value):
|
||||
logging.info('Updating %r to %r', 'age', value)
|
||||
obj._age = value
|
||||
|
||||
class Person:
|
||||
|
||||
age = LoggedAgeAccess() # Descriptor
|
||||
|
||||
def __init__(self, name, age):
|
||||
self.name = name # Regular instance attribute
|
||||
self.age = age # Calls the descriptor
|
||||
|
||||
def birthday(self):
|
||||
self.age += 1 # Calls both __get__() and __set__()
|
||||
|
||||
|
||||
An interactive session shows that all access to the managed attribute *age* is
|
||||
logged, but that the regular attribute *name* is not logged::
|
||||
|
||||
>>> mary = Person('Mary M', 30) # The initial age update is logged
|
||||
INFO:root:Updating 'age' to 30
|
||||
>>> dave = Person('David D', 40)
|
||||
INFO:root:Updating 'age' to 40
|
||||
|
||||
>>> vars(mary) # The actual data is in a private attribute
|
||||
{'name': 'Mary M', '_age': 30}
|
||||
>>> vars(dave)
|
||||
{'name': 'David D', '_age': 40}
|
||||
|
||||
>>> mary.age # Access the data and log the lookup
|
||||
INFO:root:Accessing 'age' giving 30
|
||||
30
|
||||
>>> mary.birthday() # Updates are logged as well
|
||||
INFO:root:Accessing 'age' giving 30
|
||||
INFO:root:Updating 'age' to 31
|
||||
|
||||
>>> dave.name # Regular attribute lookup isn't logged
|
||||
'David D'
|
||||
>>> dave.age # Only the managed attribute is logged
|
||||
INFO:root:Accessing 'age' giving 40
|
||||
40
|
||||
|
||||
One major issue with this example is the private name *_age* is hardwired in
|
||||
the *LoggedAgeAccess* class. That means that each instance can only have one
|
||||
logged attribute and that its name is unchangeable. In the next example,
|
||||
we'll fix that problem.
|
||||
|
||||
|
||||
Customized Names
|
||||
----------------
|
||||
|
||||
When a class uses descriptors, it can inform each descriptor about what
|
||||
variable name was used.
|
||||
|
||||
In this example, the :class:`Person` class has two descriptor instances,
|
||||
*name* and *age*. When the :class:`Person` class is defined, it makes a
|
||||
callback to :meth:`__set_name__` in *LoggedAccess* so that the field names can
|
||||
be recorded, giving each descriptor its own *public_name* and *private_name*::
|
||||
|
||||
import logging
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
class LoggedAccess:
|
||||
|
||||
def __set_name__(self, owner, name):
|
||||
self.public_name = name
|
||||
self.private_name = f'_{name}'
|
||||
|
||||
def __get__(self, obj, objtype=None):
|
||||
value = getattr(obj, self.private_name)
|
||||
logging.info('Accessing %r giving %r', self.public_name, value)
|
||||
return value
|
||||
|
||||
def __set__(self, obj, value):
|
||||
logging.info('Updating %r to %r', self.public_name, value)
|
||||
setattr(obj, self.private_name, value)
|
||||
|
||||
class Person:
|
||||
|
||||
name = LoggedAccess() # First descriptor
|
||||
age = LoggedAccess() # Second descriptor
|
||||
|
||||
def __init__(self, name, age):
|
||||
self.name = name # Calls the first descriptor
|
||||
self.age = age # Calls the second descriptor
|
||||
|
||||
def birthday(self):
|
||||
self.age += 1
|
||||
|
||||
An interactive session shows that the :class:`Person` class has called
|
||||
:meth:`__set_name__` so that the field names would be recorded. Here
|
||||
we call :func:`vars` to lookup the descriptor without triggering it::
|
||||
|
||||
>>> vars(vars(Person)['name'])
|
||||
{'public_name': 'name', 'private_name': '_name'}
|
||||
>>> vars(vars(Person)['age'])
|
||||
{'public_name': 'age', 'private_name': '_age'}
|
||||
|
||||
The new class now logs access to both *name* and *age*::
|
||||
|
||||
>>> pete = Person('Peter P', 10)
|
||||
INFO:root:Updating 'name' to 'Peter P'
|
||||
INFO:root:Updating 'age' to 10
|
||||
>>> kate = Person('Catherine C', 20)
|
||||
INFO:root:Updating 'name' to 'Catherine C'
|
||||
INFO:root:Updating 'age' to 20
|
||||
|
||||
The two *Person* instances contain only the private names::
|
||||
|
||||
>>> vars(pete)
|
||||
{'_name': 'Peter P', '_age': 10}
|
||||
>>> vars(kate)
|
||||
{'_name': 'Catherine C', '_age': 20}
|
||||
|
||||
|
||||
Closing thoughts
|
||||
----------------
|
||||
|
||||
A :term:`descriptor` is what we call any object that defines :meth:`__get__`,
|
||||
:meth:`__set__`, or :meth:`__delete__`.
|
||||
|
||||
Descriptors get invoked by the dot operator during attribute lookup. If a
|
||||
descriptor is accessed indirectly with ``vars(some_class)[descriptor_name]``,
|
||||
the descriptor instance is returned without invoking it.
|
||||
|
||||
Descriptors only work when used as class variables. When put in instances,
|
||||
they have no effect.
|
||||
|
||||
The main motivation for descriptors is to provide a hook allowing objects
|
||||
stored in class variables to control what happens during dotted lookup.
|
||||
|
||||
Traditionally, the calling class controls what happens during lookup.
|
||||
Descriptors invert that relationship and allow the data being looked-up to
|
||||
have a say in the matter.
|
||||
|
||||
Descriptors are used throughout the language. It is how functions turn into
|
||||
bound methods. Common tools like :func:`classmethod`, :func:`staticmethod`,
|
||||
:func:`property`, and :func:`functools.cached_property` are all implemented as
|
||||
descriptors.
|
||||
|
||||
|
||||
Complete Practical Example
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In this example, we create a practical and powerful tool for locating
|
||||
notoriously hard to find data corruption bugs.
|
||||
|
||||
|
||||
Validator class
|
||||
---------------
|
||||
|
||||
A validator is a descriptor for managed attribute access. Prior to storing
|
||||
any data, it verifies that the new value meets various type and range
|
||||
restrictions. If those restrictions aren't met, it raises an exception to
|
||||
prevents data corruption at its source.
|
||||
|
||||
This :class:`Validator` class is both an :term:`abstract base class` and a
|
||||
managed attribute descriptor::
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
class Validator(ABC):
|
||||
|
||||
def __set_name__(self, owner, name):
|
||||
self.private_name = f'_{name}'
|
||||
|
||||
def __get__(self, obj, objtype=None):
|
||||
return getattr(obj, self.private_name)
|
||||
|
||||
def __set__(self, obj, value):
|
||||
self.validate(value)
|
||||
setattr(obj, self.private_name, value)
|
||||
|
||||
@abstractmethod
|
||||
def validate(self, value):
|
||||
pass
|
||||
|
||||
Custom validators need to subclass from :class:`Validator` and supply a
|
||||
:meth:`validate` method to test various restrictions as needed.
|
||||
|
||||
|
||||
Custom validators
|
||||
-----------------
|
||||
|
||||
Here are three practical data validation utilities:
|
||||
|
||||
1) :class:`OneOf` verifies that a value is one of a restricted set of options.
|
||||
|
||||
2) :class:`Number` verifies that a value is either an :class:`int` or
|
||||
:class:`float`. Optionally, it verifies that a value is between a given
|
||||
minimum or maximum.
|
||||
|
||||
3) :class:`String` verifies that a value is a :class:`str`. Optionally, it
|
||||
validates a given minimum or maximum length. Optionally, it can test for
|
||||
another predicate as well.
|
||||
|
||||
::
|
||||
|
||||
class OneOf(Validator):
|
||||
|
||||
def __init__(self, *options):
|
||||
self.options = set(options)
|
||||
|
||||
def validate(self, value):
|
||||
if value not in self.options:
|
||||
raise ValueError(f'Expected {value!r} to be one of {self.options!r}')
|
||||
|
||||
class Number(Validator):
|
||||
|
||||
def __init__(self, minvalue=None, maxvalue=None):
|
||||
self.minvalue = minvalue
|
||||
self.maxvalue = maxvalue
|
||||
|
||||
def validate(self, value):
|
||||
if not isinstance(value, (int, float)):
|
||||
raise TypeError(f'Expected {value!r} to be an int or float')
|
||||
if self.minvalue is not None and value < self.minvalue:
|
||||
raise ValueError(
|
||||
f'Expected {value!r} to be at least {self.minvalue!r}'
|
||||
)
|
||||
if self.maxvalue is not None and value > self.maxvalue:
|
||||
raise ValueError(
|
||||
f'Expected {value!r} to be no more than {self.maxvalue!r}'
|
||||
)
|
||||
|
||||
class String(Validator):
|
||||
|
||||
def __init__(self, minsize=None, maxsize=None, predicate=None):
|
||||
self.minsize = minsize
|
||||
self.maxsize = maxsize
|
||||
self.predicate = predicate
|
||||
|
||||
def validate(self, value):
|
||||
if not isinstance(value, str):
|
||||
raise TypeError(f'Expected {value!r} to be an str')
|
||||
if self.minsize is not None and len(value) < self.minsize:
|
||||
raise ValueError(
|
||||
f'Expected {value!r} to be no smaller than {self.minsize!r}'
|
||||
)
|
||||
if self.maxsize is not None and len(value) > self.maxsize:
|
||||
raise ValueError(
|
||||
f'Expected {value!r} to be no bigger than {self.maxsize!r}'
|
||||
)
|
||||
if self.predicate is not None and not self.predicate(value):
|
||||
raise ValueError(
|
||||
f'Expected {self.predicate} to be true for {value!r}'
|
||||
)
|
||||
|
||||
|
||||
Practical use
|
||||
-------------
|
||||
|
||||
Here's how the data validators can be used in a real class::
|
||||
|
||||
class Component:
|
||||
|
||||
name = String(minsize=3, maxsize=10, predicate=str.isupper)
|
||||
kind = OneOf('plastic', 'metal')
|
||||
quantity = Number(minvalue=0)
|
||||
|
||||
def __init__(self, name, kind, quantity):
|
||||
self.name = name
|
||||
self.kind = kind
|
||||
self.quantity = quantity
|
||||
|
||||
The descriptors prevent invalid instances from being created::
|
||||
|
||||
Component('WIDGET', 'metal', 5) # Allowed.
|
||||
Component('Widget', 'metal', 5) # Blocked: 'Widget' is not all uppercase
|
||||
Component('WIDGET', 'metle', 5) # Blocked: 'metle' is misspelled
|
||||
Component('WIDGET', 'metal', -5) # Blocked: -5 is negative
|
||||
Component('WIDGET', 'metal', 'V') # Blocked: 'V' isn't a number
|
||||
|
||||
|
||||
Technical Tutorial
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
What follows is a more technical tutorial for the mechanics and details of how
|
||||
descriptors work.
|
||||
|
||||
|
||||
Abstract
|
||||
--------
|
||||
|
||||
|
@ -39,10 +450,10 @@ Where this occurs in the precedence chain depends on which descriptor methods
|
|||
were defined.
|
||||
|
||||
Descriptors are a powerful, general purpose protocol. They are the mechanism
|
||||
behind properties, methods, static methods, class methods, and :func:`super()`.
|
||||
They are used throughout Python itself to implement the new style classes
|
||||
introduced in version 2.2. Descriptors simplify the underlying C-code and offer
|
||||
a flexible set of new tools for everyday Python programs.
|
||||
behind properties, methods, static methods, class methods, and
|
||||
:func:`super()`. They are used throughout Python itself. Descriptors
|
||||
simplify the underlying C code and offer a flexible set of new tools for
|
||||
everyday Python programs.
|
||||
|
||||
|
||||
Descriptor Protocol
|
||||
|
@ -132,11 +543,29 @@ The implementation details are in :c:func:`super_getattro()` in
|
|||
The details above show that the mechanism for descriptors is embedded in the
|
||||
:meth:`__getattribute__()` methods for :class:`object`, :class:`type`, and
|
||||
:func:`super`. Classes inherit this machinery when they derive from
|
||||
:class:`object` or if they have a meta-class providing similar functionality.
|
||||
:class:`object` or if they have a metaclass providing similar functionality.
|
||||
Likewise, classes can turn-off descriptor invocation by overriding
|
||||
:meth:`__getattribute__()`.
|
||||
|
||||
|
||||
Automatic Name Notification
|
||||
---------------------------
|
||||
|
||||
Sometimes it is desirable for a descriptor to know what class variable name it
|
||||
was assigned to. When a new class is created, the :class:`type` metaclass
|
||||
scans the dictionary of the new class. If any of the entries are descriptors
|
||||
and if they define :meth:`__set_name__`, that method is called with two
|
||||
arguments. The *owner* is the class where the descriptor is used, the *name*
|
||||
is class variable the descriptor was assigned to.
|
||||
|
||||
The implementation details are in :c:func:`type_new()` and
|
||||
:c:func:`set_names()` in :source:`Objects/typeobject.c`.
|
||||
|
||||
Since the update logic is in :meth:`type.__new__`, notifications only take
|
||||
place at the time of class creation. If descriptors are added to the class
|
||||
afterwards, :meth:`__set_name__` will need to be called manually.
|
||||
|
||||
|
||||
Descriptor Example
|
||||
------------------
|
||||
|
||||
|
@ -154,7 +583,7 @@ descriptor is useful for monitoring just a few chosen attributes::
|
|||
self.val = initval
|
||||
self.name = name
|
||||
|
||||
def __get__(self, obj, objtype):
|
||||
def __get__(self, obj, objtype=None):
|
||||
print('Retrieving', self.name)
|
||||
return self.val
|
||||
|
||||
|
@ -162,11 +591,11 @@ descriptor is useful for monitoring just a few chosen attributes::
|
|||
print('Updating', self.name)
|
||||
self.val = val
|
||||
|
||||
>>> class MyClass:
|
||||
... x = RevealAccess(10, 'var "x"')
|
||||
... y = 5
|
||||
...
|
||||
>>> m = MyClass()
|
||||
class B:
|
||||
x = RevealAccess(10, 'var "x"')
|
||||
y = 5
|
||||
|
||||
>>> m = B()
|
||||
>>> m.x
|
||||
Retrieving var "x"
|
||||
10
|
||||
|
@ -251,12 +680,13 @@ affect existing client code accessing the attribute directly. The solution is
|
|||
to wrap access to the value attribute in a property data descriptor::
|
||||
|
||||
class Cell:
|
||||
. . .
|
||||
def getvalue(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def value(self):
|
||||
"Recalculate the cell before returning value"
|
||||
self.recalc()
|
||||
return self._value
|
||||
value = property(getvalue)
|
||||
|
||||
|
||||
Functions and Methods
|
||||
|
@ -278,42 +708,48 @@ non-data descriptors which return bound methods when they are invoked from an
|
|||
object. In pure Python, it works like this::
|
||||
|
||||
class Function:
|
||||
. . .
|
||||
...
|
||||
|
||||
def __get__(self, obj, objtype=None):
|
||||
"Simulate func_descr_get() in Objects/funcobject.c"
|
||||
if obj is None:
|
||||
return self
|
||||
return types.MethodType(self, obj)
|
||||
|
||||
Running the interpreter shows how the function descriptor works in practice::
|
||||
Running the following in class in the interpreter shows how the function
|
||||
descriptor works in practice::
|
||||
|
||||
>>> class D:
|
||||
... def f(self, x):
|
||||
... return x
|
||||
...
|
||||
>>> d = D()
|
||||
class D:
|
||||
def f(self, x):
|
||||
return x
|
||||
|
||||
Access through the class dictionary does not invoke :meth:`__get__`. Instead,
|
||||
it just returns the underlying function object::
|
||||
|
||||
# Access through the class dictionary does not invoke __get__.
|
||||
# It just returns the underlying function object.
|
||||
>>> D.__dict__['f']
|
||||
<function D.f at 0x00C45070>
|
||||
|
||||
# Dotted access from a class calls __get__() which just returns
|
||||
# the underlying function unchanged.
|
||||
Dotted access from a class calls :meth:`__get__` which just returns the
|
||||
underlying function unchanged::
|
||||
|
||||
>>> D.f
|
||||
<function D.f at 0x00C45070>
|
||||
|
||||
# The function has a __qualname__ attribute to support introspection
|
||||
The function has a :term:`qualified name` attribute to support introspection::
|
||||
|
||||
>>> D.f.__qualname__
|
||||
'D.f'
|
||||
|
||||
# Dotted access from an instance calls __get__() which returns the
|
||||
# function wrapped in a bound method object
|
||||
Dotted access from an instance calls :meth:`__get__` which returns a bound
|
||||
method object::
|
||||
|
||||
>>> d = D()
|
||||
>>> d.f
|
||||
<bound method D.f of <__main__.D object at 0x00B18C90>>
|
||||
|
||||
# Internally, the bound method stores the underlying function and
|
||||
# the bound instance.
|
||||
Internally, the bound method stores the underlying function and the bound
|
||||
instance::
|
||||
|
||||
>>> d.f.__func__
|
||||
<function D.f at 0x1012e5ae8>
|
||||
>>> d.f.__self__
|
||||
|
@ -328,20 +764,20 @@ patterns of binding functions into methods.
|
|||
|
||||
To recap, functions have a :meth:`__get__` method so that they can be converted
|
||||
to a method when accessed as attributes. The non-data descriptor transforms an
|
||||
``obj.f(*args)`` call into ``f(obj, *args)``. Calling ``klass.f(*args)``
|
||||
``obj.f(*args)`` call into ``f(obj, *args)``. Calling ``cls.f(*args)``
|
||||
becomes ``f(*args)``.
|
||||
|
||||
This chart summarizes the binding and its two most useful variants:
|
||||
|
||||
+-----------------+----------------------+------------------+
|
||||
| Transformation | Called from an | Called from a |
|
||||
| | Object | Class |
|
||||
| | object | class |
|
||||
+=================+======================+==================+
|
||||
| function | f(obj, \*args) | f(\*args) |
|
||||
+-----------------+----------------------+------------------+
|
||||
| staticmethod | f(\*args) | f(\*args) |
|
||||
+-----------------+----------------------+------------------+
|
||||
| classmethod | f(type(obj), \*args) | f(klass, \*args) |
|
||||
| classmethod | f(type(obj), \*args) | f(cls, \*args) |
|
||||
+-----------------+----------------------+------------------+
|
||||
|
||||
Static methods return the underlying function without changes. Calling either
|
||||
|
@ -365,11 +801,11 @@ It can be called either from an object or the class: ``s.erf(1.5) --> .9332`` o
|
|||
Since staticmethods return the underlying function with no changes, the example
|
||||
calls are unexciting::
|
||||
|
||||
>>> class E:
|
||||
... def f(x):
|
||||
... print(x)
|
||||
... f = staticmethod(f)
|
||||
...
|
||||
class E:
|
||||
@staticmethod
|
||||
def f(x):
|
||||
print(x)
|
||||
|
||||
>>> E.f(3)
|
||||
3
|
||||
>>> E().f(3)
|
||||
|
@ -391,32 +827,33 @@ Unlike static methods, class methods prepend the class reference to the
|
|||
argument list before calling the function. This format is the same
|
||||
for whether the caller is an object or a class::
|
||||
|
||||
>>> class E:
|
||||
... def f(klass, x):
|
||||
... return klass.__name__, x
|
||||
... f = classmethod(f)
|
||||
...
|
||||
>>> print(E.f(3))
|
||||
('E', 3)
|
||||
>>> print(E().f(3))
|
||||
('E', 3)
|
||||
class F:
|
||||
@classmethod
|
||||
def f(cls, x):
|
||||
return cls.__name__, x
|
||||
|
||||
>>> print(F.f(3))
|
||||
('F', 3)
|
||||
>>> print(F().f(3))
|
||||
('F', 3)
|
||||
|
||||
|
||||
This behavior is useful whenever the function only needs to have a class
|
||||
reference and does not care about any underlying data. One use for classmethods
|
||||
is to create alternate class constructors. In Python 2.3, the classmethod
|
||||
reference and does not care about any underlying data. One use for
|
||||
classmethods is to create alternate class constructors. The classmethod
|
||||
:func:`dict.fromkeys` creates a new dictionary from a list of keys. The pure
|
||||
Python equivalent is::
|
||||
|
||||
class Dict:
|
||||
. . .
|
||||
def fromkeys(klass, iterable, value=None):
|
||||
...
|
||||
|
||||
@classmethod
|
||||
def fromkeys(cls, iterable, value=None):
|
||||
"Emulate dict_fromkeys() in Objects/dictobject.c"
|
||||
d = klass()
|
||||
d = cls()
|
||||
for key in iterable:
|
||||
d[key] = value
|
||||
return d
|
||||
fromkeys = classmethod(fromkeys)
|
||||
|
||||
Now a new dictionary of unique keys can be constructed like this::
|
||||
|
||||
|
@ -432,10 +869,9 @@ Using the non-data descriptor protocol, a pure Python version of
|
|||
def __init__(self, f):
|
||||
self.f = f
|
||||
|
||||
def __get__(self, obj, klass=None):
|
||||
if klass is None:
|
||||
klass = type(obj)
|
||||
def __get__(self, obj, cls=None):
|
||||
if cls is None:
|
||||
cls = type(obj)
|
||||
def newfunc(*args):
|
||||
return self.f(klass, *args)
|
||||
return self.f(cls, *args)
|
||||
return newfunc
|
||||
|
||||
|
|
|
@ -23,6 +23,9 @@ howto/curses,,:blue,"2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white.
|
|||
howto/curses,,:magenta,"2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The"
|
||||
howto/curses,,:cyan,"2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The"
|
||||
howto/curses,,:white,"2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The"
|
||||
howto/descriptor,,:root,"INFO:root"
|
||||
howto/descriptor,,:Updating,"root:Updating"
|
||||
howto/descriptor,,:Accessing,"root:Accessing"
|
||||
howto/instrumentation,,::,python$target:::function-entry
|
||||
howto/instrumentation,,:function,python$target:::function-entry
|
||||
howto/instrumentation,,::,python$target:::function-return
|
||||
|
|
|
Loading…
Reference in New Issue