Issue #18606: Add the new "statistics" module (PEP 450). Contributed
by Steven D'Aprano.
This commit is contained in:
parent
aa2b22abf3
commit
f5e987bbe6
|
@ -23,3 +23,4 @@ The following modules are documented in this chapter:
|
|||
decimal.rst
|
||||
fractions.rst
|
||||
random.rst
|
||||
statistics.rst
|
||||
|
|
|
@ -0,0 +1,463 @@
|
|||
:mod:`statistics` --- Mathematical statistics functions
|
||||
=======================================================
|
||||
|
||||
.. module:: statistics
|
||||
:synopsis: mathematical statistics functions
|
||||
.. moduleauthor:: Steven D'Aprano <steve+python@pearwood.info>
|
||||
.. sectionauthor:: Steven D'Aprano <steve+python@pearwood.info>
|
||||
|
||||
.. versionadded:: 3.4
|
||||
|
||||
.. testsetup:: *
|
||||
|
||||
from statistics import *
|
||||
__name__ = '<doctest>'
|
||||
|
||||
**Source code:** :source:`Lib/statistics.py`
|
||||
|
||||
--------------
|
||||
|
||||
This module provides functions for calculating mathematical statistics of
|
||||
numeric (:class:`Real`-valued) data.
|
||||
|
||||
Averages and measures of central location
|
||||
-----------------------------------------
|
||||
|
||||
These functions calculate an average or typical value from a population
|
||||
or sample.
|
||||
|
||||
======================= =============================================
|
||||
:func:`mean` Arithmetic mean ("average") of data.
|
||||
:func:`median` Median (middle value) of data.
|
||||
:func:`median_low` Low median of data.
|
||||
:func:`median_high` High median of data.
|
||||
:func:`median_grouped` Median, or 50th percentile, of grouped data.
|
||||
:func:`mode` Mode (most common value) of discrete data.
|
||||
======================= =============================================
|
||||
|
||||
:func:`mean`
|
||||
~~~~~~~~~~~~
|
||||
|
||||
The :func:`mean` function calculates the arithmetic mean, commonly known
|
||||
as the average, of its iterable argument:
|
||||
|
||||
.. function:: mean(data)
|
||||
|
||||
Return the sample arithmetic mean of *data*, a sequence or iterator
|
||||
of real-valued numbers.
|
||||
|
||||
The arithmetic mean is the sum of the data divided by the number of
|
||||
data points. It is commonly called "the average", although it is only
|
||||
one of many different mathematical averages. It is a measure of the
|
||||
central location of the data.
|
||||
|
||||
Some examples of use:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> mean([1, 2, 3, 4, 4])
|
||||
2.8
|
||||
>>> mean([-1.0, 2.5, 3.25, 5.75])
|
||||
2.625
|
||||
|
||||
>>> from fractions import Fraction as F
|
||||
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
|
||||
Fraction(13, 21)
|
||||
|
||||
>>> from decimal import Decimal as D
|
||||
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
|
||||
Decimal('0.5625')
|
||||
|
||||
.. note::
|
||||
|
||||
The mean is strongly effected by outliers and is not a robust
|
||||
estimator for central location: the mean is not necessarily a
|
||||
typical example of the data points. For more robust, although less
|
||||
efficient, measures of central location, see :func:`median` and
|
||||
:func:`mode`. (In this case, "efficient" refers to statistical
|
||||
efficiency rather than computational efficiency.)
|
||||
|
||||
The sample mean gives an unbiased estimate of the true population
|
||||
mean, which means that, taken on average over all the possible
|
||||
samples, ``mean(sample)`` converges on the true mean of the entire
|
||||
population. If *data* represents the entire population rather than
|
||||
a sample, then ``mean(data)`` is equivalent to calculating the true
|
||||
population mean μ.
|
||||
|
||||
If ``data`` is empty, :exc:`StatisticsError` will be raised.
|
||||
|
||||
:func:`median`
|
||||
~~~~~~~~~~~~~~
|
||||
|
||||
The :func:`median` function calculates the median, or middle, data point,
|
||||
using the common "mean of middle two" method.
|
||||
|
||||
.. seealso::
|
||||
|
||||
:func:`median_low`
|
||||
|
||||
:func:`median_high`
|
||||
|
||||
:func:`median_grouped`
|
||||
|
||||
.. function:: median(data)
|
||||
|
||||
Return the median (middle value) of numeric data.
|
||||
|
||||
The median is a robust measure of central location, and is less affected
|
||||
by the presence of outliers in your data. When the number of data points
|
||||
is odd, the middle data point is returned:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> median([1, 3, 5])
|
||||
3
|
||||
|
||||
When the number of data points is even, the median is interpolated by
|
||||
taking the average of the two middle values:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> median([1, 3, 5, 7])
|
||||
4.0
|
||||
|
||||
This is suited for when your data is discrete, and you don't mind that
|
||||
the median may not be an actual data point.
|
||||
|
||||
If data is empty, :exc:`StatisticsError` is raised.
|
||||
|
||||
:func:`median_low`
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The :func:`median_low` function calculates the low median without
|
||||
interpolation.
|
||||
|
||||
.. function:: median_low(data)
|
||||
|
||||
Return the low median of numeric data.
|
||||
|
||||
The low median is always a member of the data set. When the number
|
||||
of data points is odd, the middle value is returned. When it is
|
||||
even, the smaller of the two middle values is returned.
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> median_low([1, 3, 5])
|
||||
3
|
||||
>>> median_low([1, 3, 5, 7])
|
||||
3
|
||||
|
||||
Use the low median when your data are discrete and you prefer the median
|
||||
to be an actual data point rather than interpolated.
|
||||
|
||||
If data is empty, :exc:`StatisticsError` is raised.
|
||||
|
||||
:func:`median_high`
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The :func:`median_high` function calculates the high median without
|
||||
interpolation.
|
||||
|
||||
.. function:: median_high(data)
|
||||
|
||||
Return the high median of data.
|
||||
|
||||
The high median is always a member of the data set. When the number of
|
||||
data points is odd, the middle value is returned. When it is even, the
|
||||
larger of the two middle values is returned.
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> median_high([1, 3, 5])
|
||||
3
|
||||
>>> median_high([1, 3, 5, 7])
|
||||
5
|
||||
|
||||
Use the high median when your data are discrete and you prefer the median
|
||||
to be an actual data point rather than interpolated.
|
||||
|
||||
If data is empty, :exc:`StatisticsError` is raised.
|
||||
|
||||
:func:`median_grouped`
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The :func:`median_grouped` function calculates the median of grouped data
|
||||
as the 50th percentile, using interpolation.
|
||||
|
||||
.. function:: median_grouped(data [, interval])
|
||||
|
||||
Return the median of grouped continuous data, calculated as the
|
||||
50th percentile.
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> median_grouped([52, 52, 53, 54])
|
||||
52.5
|
||||
|
||||
In the following example, the data are rounded, so that each value
|
||||
represents the midpoint of data classes, e.g. 1 is the midpoint of the
|
||||
class 0.5-1.5, 2 is the midpoint of 1.5-2.5, 3 is the midpoint of
|
||||
2.5-3.5, etc. With the data given, the middle value falls somewhere in
|
||||
the class 3.5-4.5, and interpolation is used to estimate it:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
|
||||
3.7
|
||||
|
||||
Optional argument ``interval`` represents the class interval, and
|
||||
defaults to 1. Changing the class interval naturally will change the
|
||||
interpolation:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> median_grouped([1, 3, 3, 5, 7], interval=1)
|
||||
3.25
|
||||
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
|
||||
3.5
|
||||
|
||||
This function does not check whether the data points are at least
|
||||
``interval`` apart.
|
||||
|
||||
.. impl-detail::
|
||||
|
||||
Under some circumstances, :func:`median_grouped` may coerce data
|
||||
points to floats. This behaviour is likely to change in the future.
|
||||
|
||||
.. seealso::
|
||||
|
||||
* "Statistics for the Behavioral Sciences", Frederick J Gravetter
|
||||
and Larry B Wallnau (8th Edition).
|
||||
|
||||
* Calculating the `median <http://www.ualberta.ca/~opscan/median.html>`_.
|
||||
|
||||
* The `SSMEDIAN <https://projects.gnome.org/gnumeric/doc/gnumeric-function-SSMEDIAN.shtml>`_
|
||||
function in the Gnome Gnumeric spreadsheet, including
|
||||
`this discussion <https://mail.gnome.org/archives/gnumeric-list/2011-April/msg00018.html>`_.
|
||||
|
||||
If data is empty, :exc:`StatisticsError` is raised.
|
||||
|
||||
:func:`mode`
|
||||
~~~~~~~~~~~~
|
||||
|
||||
The :func:`mode` function calculates the mode, or most common element, of
|
||||
discrete or nominal data. The mode (when it exists) is the most typical
|
||||
value, and is a robust measure of central location.
|
||||
|
||||
.. function:: mode(data)
|
||||
|
||||
Return the most common data point from discrete or nominal data.
|
||||
|
||||
``mode`` assumes discrete data, and returns a single value. This is the
|
||||
standard treatment of the mode as commonly taught in schools:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
|
||||
3
|
||||
|
||||
The mode is unique in that it is the only statistic which also applies
|
||||
to nominal (non-numeric) data:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
|
||||
'red'
|
||||
|
||||
If data is empty, or if there is not exactly one most common value,
|
||||
:exc:`StatisticsError` is raised.
|
||||
|
||||
Measures of spread
|
||||
------------------
|
||||
|
||||
These functions calculate a measure of how much the population or sample
|
||||
tends to deviate from the typical or average values.
|
||||
|
||||
======================= =============================================
|
||||
:func:`pstdev` Population standard deviation of data.
|
||||
:func:`pvariance` Population variance of data.
|
||||
:func:`stdev` Sample standard deviation of data.
|
||||
:func:`variance` Sample variance of data.
|
||||
======================= =============================================
|
||||
|
||||
:func:`pstdev`
|
||||
~~~~~~~~~~~~~~
|
||||
|
||||
The :func:`pstdev` function calculates the standard deviation of a
|
||||
population. The standard deviation is equivalent to the square root of
|
||||
the variance.
|
||||
|
||||
.. function:: pstdev(data [, mu])
|
||||
|
||||
Return the square root of the population variance. See :func:`pvariance`
|
||||
for arguments and other details.
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
||||
0.986893273527251
|
||||
|
||||
:func:`pvariance`
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
The :func:`pvariance` function calculates the variance of a population.
|
||||
Variance, or second moment about the mean, is a measure of the variability
|
||||
(spread or dispersion) of data. A large variance indicates that the data is
|
||||
spread out; a small variance indicates it is clustered closely around the
|
||||
mean.
|
||||
|
||||
.. function:: pvariance(data [, mu])
|
||||
|
||||
Return the population variance of *data*, a non-empty iterable of
|
||||
real-valued numbers.
|
||||
|
||||
If the optional second argument *mu* is given, it should be the mean
|
||||
of *data*. If it is missing or None (the default), the mean is
|
||||
automatically caclulated.
|
||||
|
||||
Use this function to calculate the variance from the entire population.
|
||||
To estimate the variance from a sample, the :func:`variance` function is
|
||||
usually a better choice.
|
||||
|
||||
Examples:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
|
||||
>>> pvariance(data)
|
||||
1.25
|
||||
|
||||
If you have already calculated the mean of your data, you can pass
|
||||
it as the optional second argument *mu* to avoid recalculation:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> mu = mean(data)
|
||||
>>> pvariance(data, mu)
|
||||
1.25
|
||||
|
||||
This function does not attempt to verify that you have passed the actual
|
||||
mean as *mu*. Using arbitrary values for *mu* may lead to invalid or
|
||||
impossible results.
|
||||
|
||||
Decimals and Fractions are supported:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> from decimal import Decimal as D
|
||||
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
||||
Decimal('24.815')
|
||||
|
||||
>>> from fractions import Fraction as F
|
||||
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
|
||||
Fraction(13, 72)
|
||||
|
||||
.. note::
|
||||
|
||||
When called with the entire population, this gives the population
|
||||
variance σ². When called on a sample instead, this is the biased
|
||||
sample variance s², also known as variance with N degrees of freedom.
|
||||
|
||||
If you somehow know the true population mean μ, you may use this
|
||||
function to calculate the variance of a sample, giving the known
|
||||
population mean as the second argument. Provided the data points are
|
||||
representative (e.g. independent and identically distributed), the
|
||||
result will be an unbiased estimate of the population variance.
|
||||
|
||||
Raises :exc:`StatisticsError` if *data* is empty.
|
||||
|
||||
:func:`stdev`
|
||||
~~~~~~~~~~~~~~
|
||||
|
||||
The :func:`stdev` function calculates the standard deviation of a sample.
|
||||
The standard deviation is equivalent to the square root of the variance.
|
||||
|
||||
.. function:: stdev(data [, xbar])
|
||||
|
||||
Return the square root of the sample variance. See :func:`variance` for
|
||||
arguments and other details.
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
||||
1.0810874155219827
|
||||
|
||||
:func:`variance`
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
The :func:`variance` function calculates the variance of a sample. Variance,
|
||||
or second moment about the mean, is a measure of the variability (spread or
|
||||
dispersion) of data. A large variance indicates that the data is spread out;
|
||||
a small variance indicates it is clustered closely around the mean.
|
||||
|
||||
.. function:: variance(data [, xbar])
|
||||
|
||||
Return the sample variance of *data*, an iterable of at least two
|
||||
real-valued numbers.
|
||||
|
||||
If the optional second argument *xbar* is given, it should be the mean
|
||||
of *data*. If it is missing or None (the default), the mean is
|
||||
automatically caclulated.
|
||||
|
||||
Use this function when your data is a sample from a population. To
|
||||
calculate the variance from the entire population, see :func:`pvariance`.
|
||||
|
||||
Examples:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
|
||||
>>> variance(data)
|
||||
1.3720238095238095
|
||||
|
||||
If you have already calculated the mean of your data, you can pass
|
||||
it as the optional second argument *xbar* to avoid recalculation:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> m = mean(data)
|
||||
>>> variance(data, m)
|
||||
1.3720238095238095
|
||||
|
||||
This function does not attempt to verify that you have passed the actual
|
||||
mean as *xbar*. Using arbitrary values for *xbar* can lead to invalid or
|
||||
impossible results.
|
||||
|
||||
Decimal and Fraction values are supported:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> from decimal import Decimal as D
|
||||
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
||||
Decimal('31.01875')
|
||||
|
||||
>>> from fractions import Fraction as F
|
||||
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
|
||||
Fraction(67, 108)
|
||||
|
||||
.. note::
|
||||
|
||||
This is the sample variance s² with Bessel's correction, also known
|
||||
as variance with N-1 degrees of freedom. Provided that the data
|
||||
points are representative (e.g. independent and identically
|
||||
distributed), the result should be an unbiased estimate of the true
|
||||
population variance.
|
||||
|
||||
If you somehow know the actual population mean μ you should pass it
|
||||
to the :func:`pvariance` function as the *mu* parameter to get
|
||||
the variance of a sample.
|
||||
|
||||
Raises :exc:`StatisticsError` if *data* has fewer than two values.
|
||||
|
||||
Exceptions
|
||||
----------
|
||||
|
||||
A single exception is defined:
|
||||
|
||||
:exc:`StatisticsError`
|
||||
|
||||
Subclass of :exc:`ValueError` for statistics-related exceptions.
|
||||
|
||||
..
|
||||
# This modelines must appear within the last ten lines of the file.
|
||||
kate: indent-width 3; remove-trailing-space on; replace-tabs on; encoding utf-8;
|
|
@ -0,0 +1,612 @@
|
|||
## Module statistics.py
|
||||
##
|
||||
## Copyright (c) 2013 Steven D'Aprano <steve+python@pearwood.info>.
|
||||
##
|
||||
## Licensed under the Apache License, Version 2.0 (the "License");
|
||||
## you may not use this file except in compliance with the License.
|
||||
## You may obtain a copy of the License at
|
||||
##
|
||||
## http://www.apache.org/licenses/LICENSE-2.0
|
||||
##
|
||||
## Unless required by applicable law or agreed to in writing, software
|
||||
## distributed under the License is distributed on an "AS IS" BASIS,
|
||||
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
## See the License for the specific language governing permissions and
|
||||
## limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
Basic statistics module.
|
||||
|
||||
This module provides functions for calculating statistics of data, including
|
||||
averages, variance, and standard deviation.
|
||||
|
||||
Calculating averages
|
||||
--------------------
|
||||
|
||||
================== =============================================
|
||||
Function Description
|
||||
================== =============================================
|
||||
mean Arithmetic mean (average) of data.
|
||||
median Median (middle value) of data.
|
||||
median_low Low median of data.
|
||||
median_high High median of data.
|
||||
median_grouped Median, or 50th percentile, of grouped data.
|
||||
mode Mode (most common value) of data.
|
||||
================== =============================================
|
||||
|
||||
Calculate the arithmetic mean ("the average") of data:
|
||||
|
||||
>>> mean([-1.0, 2.5, 3.25, 5.75])
|
||||
2.625
|
||||
|
||||
|
||||
Calculate the standard median of discrete data:
|
||||
|
||||
>>> median([2, 3, 4, 5])
|
||||
3.5
|
||||
|
||||
|
||||
Calculate the median, or 50th percentile, of data grouped into class intervals
|
||||
centred on the data values provided. E.g. if your data points are rounded to
|
||||
the nearest whole number:
|
||||
|
||||
>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
|
||||
2.8333333333...
|
||||
|
||||
This should be interpreted in this way: you have two data points in the class
|
||||
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
|
||||
the class interval 3.5-4.5. The median of these data points is 2.8333...
|
||||
|
||||
|
||||
Calculating variability or spread
|
||||
---------------------------------
|
||||
|
||||
================== =============================================
|
||||
Function Description
|
||||
================== =============================================
|
||||
pvariance Population variance of data.
|
||||
variance Sample variance of data.
|
||||
pstdev Population standard deviation of data.
|
||||
stdev Sample standard deviation of data.
|
||||
================== =============================================
|
||||
|
||||
Calculate the standard deviation of sample data:
|
||||
|
||||
>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
|
||||
4.38961843444...
|
||||
|
||||
If you have previously calculated the mean, you can pass it as the optional
|
||||
second argument to the four "spread" functions to avoid recalculating it:
|
||||
|
||||
>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
|
||||
>>> mu = mean(data)
|
||||
>>> pvariance(data, mu)
|
||||
2.5
|
||||
|
||||
|
||||
Exceptions
|
||||
----------
|
||||
|
||||
A single exception is defined: StatisticsError is a subclass of ValueError.
|
||||
|
||||
"""
|
||||
|
||||
__all__ = [ 'StatisticsError',
|
||||
'pstdev', 'pvariance', 'stdev', 'variance',
|
||||
'median', 'median_low', 'median_high', 'median_grouped',
|
||||
'mean', 'mode',
|
||||
]
|
||||
|
||||
|
||||
import collections
|
||||
import math
|
||||
import numbers
|
||||
import operator
|
||||
|
||||
from fractions import Fraction
|
||||
from decimal import Decimal
|
||||
|
||||
|
||||
# === Exceptions ===
|
||||
|
||||
class StatisticsError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
# === Private utilities ===
|
||||
|
||||
def _sum(data, start=0):
|
||||
"""_sum(data [, start]) -> value
|
||||
|
||||
Return a high-precision sum of the given numeric data. If optional
|
||||
argument ``start`` is given, it is added to the total. If ``data`` is
|
||||
empty, ``start`` (defaulting to 0) is returned.
|
||||
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
|
||||
11.0
|
||||
|
||||
Some sources of round-off error will be avoided:
|
||||
|
||||
>>> _sum([1e50, 1, -1e50] * 1000) # Built-in sum returns zero.
|
||||
1000.0
|
||||
|
||||
Fractions and Decimals are also supported:
|
||||
|
||||
>>> from fractions import Fraction as F
|
||||
>>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
|
||||
Fraction(63, 20)
|
||||
|
||||
>>> from decimal import Decimal as D
|
||||
>>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
|
||||
>>> _sum(data)
|
||||
Decimal('0.6963')
|
||||
|
||||
"""
|
||||
n, d = _exact_ratio(start)
|
||||
T = type(start)
|
||||
partials = {d: n} # map {denominator: sum of numerators}
|
||||
# Micro-optimizations.
|
||||
coerce_types = _coerce_types
|
||||
exact_ratio = _exact_ratio
|
||||
partials_get = partials.get
|
||||
# Add numerators for each denominator, and track the "current" type.
|
||||
for x in data:
|
||||
T = _coerce_types(T, type(x))
|
||||
n, d = exact_ratio(x)
|
||||
partials[d] = partials_get(d, 0) + n
|
||||
if None in partials:
|
||||
assert issubclass(T, (float, Decimal))
|
||||
assert not math.isfinite(partials[None])
|
||||
return T(partials[None])
|
||||
total = Fraction()
|
||||
for d, n in sorted(partials.items()):
|
||||
total += Fraction(n, d)
|
||||
if issubclass(T, int):
|
||||
assert total.denominator == 1
|
||||
return T(total.numerator)
|
||||
if issubclass(T, Decimal):
|
||||
return T(total.numerator)/total.denominator
|
||||
return T(total)
|
||||
|
||||
|
||||
def _exact_ratio(x):
|
||||
"""Convert Real number x exactly to (numerator, denominator) pair.
|
||||
|
||||
>>> _exact_ratio(0.25)
|
||||
(1, 4)
|
||||
|
||||
x is expected to be an int, Fraction, Decimal or float.
|
||||
"""
|
||||
try:
|
||||
try:
|
||||
# int, Fraction
|
||||
return (x.numerator, x.denominator)
|
||||
except AttributeError:
|
||||
# float
|
||||
try:
|
||||
return x.as_integer_ratio()
|
||||
except AttributeError:
|
||||
# Decimal
|
||||
try:
|
||||
return _decimal_to_ratio(x)
|
||||
except AttributeError:
|
||||
msg = "can't convert type '{}' to numerator/denominator"
|
||||
raise TypeError(msg.format(type(x).__name__)) from None
|
||||
except (OverflowError, ValueError):
|
||||
# INF or NAN
|
||||
if __debug__:
|
||||
# Decimal signalling NANs cannot be converted to float :-(
|
||||
if isinstance(x, Decimal):
|
||||
assert not x.is_finite()
|
||||
else:
|
||||
assert not math.isfinite(x)
|
||||
return (x, None)
|
||||
|
||||
|
||||
# FIXME This is faster than Fraction.from_decimal, but still too slow.
|
||||
def _decimal_to_ratio(d):
|
||||
"""Convert Decimal d to exact integer ratio (numerator, denominator).
|
||||
|
||||
>>> from decimal import Decimal
|
||||
>>> _decimal_to_ratio(Decimal("2.6"))
|
||||
(26, 10)
|
||||
|
||||
"""
|
||||
sign, digits, exp = d.as_tuple()
|
||||
if exp in ('F', 'n', 'N'): # INF, NAN, sNAN
|
||||
assert not d.is_finite()
|
||||
raise ValueError
|
||||
num = 0
|
||||
for digit in digits:
|
||||
num = num*10 + digit
|
||||
if sign:
|
||||
num = -num
|
||||
den = 10**-exp
|
||||
return (num, den)
|
||||
|
||||
|
||||
def _coerce_types(T1, T2):
|
||||
"""Coerce types T1 and T2 to a common type.
|
||||
|
||||
>>> _coerce_types(int, float)
|
||||
<class 'float'>
|
||||
|
||||
Coercion is performed according to this table, where "N/A" means
|
||||
that a TypeError exception is raised.
|
||||
|
||||
+----------+-----------+-----------+-----------+----------+
|
||||
| | int | Fraction | Decimal | float |
|
||||
+----------+-----------+-----------+-----------+----------+
|
||||
| int | int | Fraction | Decimal | float |
|
||||
| Fraction | Fraction | Fraction | N/A | float |
|
||||
| Decimal | Decimal | N/A | Decimal | float |
|
||||
| float | float | float | float | float |
|
||||
+----------+-----------+-----------+-----------+----------+
|
||||
|
||||
Subclasses trump their parent class; two subclasses of the same
|
||||
base class will be coerced to the second of the two.
|
||||
|
||||
"""
|
||||
# Get the common/fast cases out of the way first.
|
||||
if T1 is T2: return T1
|
||||
if T1 is int: return T2
|
||||
if T2 is int: return T1
|
||||
# Subclasses trump their parent class.
|
||||
if issubclass(T2, T1): return T2
|
||||
if issubclass(T1, T2): return T1
|
||||
# Floats trump everything else.
|
||||
if issubclass(T2, float): return T2
|
||||
if issubclass(T1, float): return T1
|
||||
# Subclasses of the same base class give priority to the second.
|
||||
if T1.__base__ is T2.__base__: return T2
|
||||
# Otherwise, just give up.
|
||||
raise TypeError('cannot coerce types %r and %r' % (T1, T2))
|
||||
|
||||
|
||||
def _counts(data):
|
||||
# Generate a table of sorted (value, frequency) pairs.
|
||||
if data is None:
|
||||
raise TypeError('None is not iterable')
|
||||
table = collections.Counter(data).most_common()
|
||||
if not table:
|
||||
return table
|
||||
# Extract the values with the highest frequency.
|
||||
maxfreq = table[0][1]
|
||||
for i in range(1, len(table)):
|
||||
if table[i][1] != maxfreq:
|
||||
table = table[:i]
|
||||
break
|
||||
return table
|
||||
|
||||
|
||||
# === Measures of central tendency (averages) ===
|
||||
|
||||
def mean(data):
|
||||
"""Return the sample arithmetic mean of data.
|
||||
|
||||
>>> mean([1, 2, 3, 4, 4])
|
||||
2.8
|
||||
|
||||
>>> from fractions import Fraction as F
|
||||
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
|
||||
Fraction(13, 21)
|
||||
|
||||
>>> from decimal import Decimal as D
|
||||
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
|
||||
Decimal('0.5625')
|
||||
|
||||
If ``data`` is empty, StatisticsError will be raised.
|
||||
"""
|
||||
if iter(data) is data:
|
||||
data = list(data)
|
||||
n = len(data)
|
||||
if n < 1:
|
||||
raise StatisticsError('mean requires at least one data point')
|
||||
return _sum(data)/n
|
||||
|
||||
|
||||
# FIXME: investigate ways to calculate medians without sorting? Quickselect?
|
||||
def median(data):
|
||||
"""Return the median (middle value) of numeric data.
|
||||
|
||||
When the number of data points is odd, return the middle data point.
|
||||
When the number of data points is even, the median is interpolated by
|
||||
taking the average of the two middle values:
|
||||
|
||||
>>> median([1, 3, 5])
|
||||
3
|
||||
>>> median([1, 3, 5, 7])
|
||||
4.0
|
||||
|
||||
"""
|
||||
data = sorted(data)
|
||||
n = len(data)
|
||||
if n == 0:
|
||||
raise StatisticsError("no median for empty data")
|
||||
if n%2 == 1:
|
||||
return data[n//2]
|
||||
else:
|
||||
i = n//2
|
||||
return (data[i - 1] + data[i])/2
|
||||
|
||||
|
||||
def median_low(data):
|
||||
"""Return the low median of numeric data.
|
||||
|
||||
When the number of data points is odd, the middle value is returned.
|
||||
When it is even, the smaller of the two middle values is returned.
|
||||
|
||||
>>> median_low([1, 3, 5])
|
||||
3
|
||||
>>> median_low([1, 3, 5, 7])
|
||||
3
|
||||
|
||||
"""
|
||||
data = sorted(data)
|
||||
n = len(data)
|
||||
if n == 0:
|
||||
raise StatisticsError("no median for empty data")
|
||||
if n%2 == 1:
|
||||
return data[n//2]
|
||||
else:
|
||||
return data[n//2 - 1]
|
||||
|
||||
|
||||
def median_high(data):
|
||||
"""Return the high median of data.
|
||||
|
||||
When the number of data points is odd, the middle value is returned.
|
||||
When it is even, the larger of the two middle values is returned.
|
||||
|
||||
>>> median_high([1, 3, 5])
|
||||
3
|
||||
>>> median_high([1, 3, 5, 7])
|
||||
5
|
||||
|
||||
"""
|
||||
data = sorted(data)
|
||||
n = len(data)
|
||||
if n == 0:
|
||||
raise StatisticsError("no median for empty data")
|
||||
return data[n//2]
|
||||
|
||||
|
||||
def median_grouped(data, interval=1):
|
||||
""""Return the 50th percentile (median) of grouped continuous data.
|
||||
|
||||
>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
|
||||
3.7
|
||||
>>> median_grouped([52, 52, 53, 54])
|
||||
52.5
|
||||
|
||||
This calculates the median as the 50th percentile, and should be
|
||||
used when your data is continuous and grouped. In the above example,
|
||||
the values 1, 2, 3, etc. actually represent the midpoint of classes
|
||||
0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
|
||||
class 3.5-4.5, and interpolation is used to estimate it.
|
||||
|
||||
Optional argument ``interval`` represents the class interval, and
|
||||
defaults to 1. Changing the class interval naturally will change the
|
||||
interpolated 50th percentile value:
|
||||
|
||||
>>> median_grouped([1, 3, 3, 5, 7], interval=1)
|
||||
3.25
|
||||
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
|
||||
3.5
|
||||
|
||||
This function does not check whether the data points are at least
|
||||
``interval`` apart.
|
||||
"""
|
||||
data = sorted(data)
|
||||
n = len(data)
|
||||
if n == 0:
|
||||
raise StatisticsError("no median for empty data")
|
||||
elif n == 1:
|
||||
return data[0]
|
||||
# Find the value at the midpoint. Remember this corresponds to the
|
||||
# centre of the class interval.
|
||||
x = data[n//2]
|
||||
for obj in (x, interval):
|
||||
if isinstance(obj, (str, bytes)):
|
||||
raise TypeError('expected number but got %r' % obj)
|
||||
try:
|
||||
L = x - interval/2 # The lower limit of the median interval.
|
||||
except TypeError:
|
||||
# Mixed type. For now we just coerce to float.
|
||||
L = float(x) - float(interval)/2
|
||||
cf = data.index(x) # Number of values below the median interval.
|
||||
# FIXME The following line could be more efficient for big lists.
|
||||
f = data.count(x) # Number of data points in the median interval.
|
||||
return L + interval*(n/2 - cf)/f
|
||||
|
||||
|
||||
def mode(data):
|
||||
"""Return the most common data point from discrete or nominal data.
|
||||
|
||||
``mode`` assumes discrete data, and returns a single value. This is the
|
||||
standard treatment of the mode as commonly taught in schools:
|
||||
|
||||
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
|
||||
3
|
||||
|
||||
This also works with nominal (non-numeric) data:
|
||||
|
||||
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
|
||||
'red'
|
||||
|
||||
If there is not exactly one most common value, ``mode`` will raise
|
||||
StatisticsError.
|
||||
"""
|
||||
# Generate a table of sorted (value, frequency) pairs.
|
||||
table = _counts(data)
|
||||
if len(table) == 1:
|
||||
return table[0][0]
|
||||
elif table:
|
||||
raise StatisticsError(
|
||||
'no unique mode; found %d equally common values' % len(table)
|
||||
)
|
||||
else:
|
||||
raise StatisticsError('no mode for empty data')
|
||||
|
||||
|
||||
# === Measures of spread ===
|
||||
|
||||
# See http://mathworld.wolfram.com/Variance.html
|
||||
# http://mathworld.wolfram.com/SampleVariance.html
|
||||
# http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
|
||||
#
|
||||
# Under no circumstances use the so-called "computational formula for
|
||||
# variance", as that is only suitable for hand calculations with a small
|
||||
# amount of low-precision data. It has terrible numeric properties.
|
||||
#
|
||||
# See a comparison of three computational methods here:
|
||||
# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
|
||||
|
||||
def _ss(data, c=None):
|
||||
"""Return sum of square deviations of sequence data.
|
||||
|
||||
If ``c`` is None, the mean is calculated in one pass, and the deviations
|
||||
from the mean are calculated in a second pass. Otherwise, deviations are
|
||||
calculated from ``c`` as given. Use the second case with care, as it can
|
||||
lead to garbage results.
|
||||
"""
|
||||
if c is None:
|
||||
c = mean(data)
|
||||
ss = _sum((x-c)**2 for x in data)
|
||||
# The following sum should mathematically equal zero, but due to rounding
|
||||
# error may not.
|
||||
ss -= _sum((x-c) for x in data)**2/len(data)
|
||||
assert not ss < 0, 'negative sum of square deviations: %f' % ss
|
||||
return ss
|
||||
|
||||
|
||||
def variance(data, xbar=None):
|
||||
"""Return the sample variance of data.
|
||||
|
||||
data should be an iterable of Real-valued numbers, with at least two
|
||||
values. The optional argument xbar, if given, should be the mean of
|
||||
the data. If it is missing or None, the mean is automatically calculated.
|
||||
|
||||
Use this function when your data is a sample from a population. To
|
||||
calculate the variance from the entire population, see ``pvariance``.
|
||||
|
||||
Examples:
|
||||
|
||||
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
|
||||
>>> variance(data)
|
||||
1.3720238095238095
|
||||
|
||||
If you have already calculated the mean of your data, you can pass it as
|
||||
the optional second argument ``xbar`` to avoid recalculating it:
|
||||
|
||||
>>> m = mean(data)
|
||||
>>> variance(data, m)
|
||||
1.3720238095238095
|
||||
|
||||
This function does not check that ``xbar`` is actually the mean of
|
||||
``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
|
||||
impossible results.
|
||||
|
||||
Decimals and Fractions are supported:
|
||||
|
||||
>>> from decimal import Decimal as D
|
||||
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
||||
Decimal('31.01875')
|
||||
|
||||
>>> from fractions import Fraction as F
|
||||
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
|
||||
Fraction(67, 108)
|
||||
|
||||
"""
|
||||
if iter(data) is data:
|
||||
data = list(data)
|
||||
n = len(data)
|
||||
if n < 2:
|
||||
raise StatisticsError('variance requires at least two data points')
|
||||
ss = _ss(data, xbar)
|
||||
return ss/(n-1)
|
||||
|
||||
|
||||
def pvariance(data, mu=None):
|
||||
"""Return the population variance of ``data``.
|
||||
|
||||
data should be an iterable of Real-valued numbers, with at least one
|
||||
value. The optional argument mu, if given, should be the mean of
|
||||
the data. If it is missing or None, the mean is automatically calculated.
|
||||
|
||||
Use this function to calculate the variance from the entire population.
|
||||
To estimate the variance from a sample, the ``variance`` function is
|
||||
usually a better choice.
|
||||
|
||||
Examples:
|
||||
|
||||
>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
|
||||
>>> pvariance(data)
|
||||
1.25
|
||||
|
||||
If you have already calculated the mean of the data, you can pass it as
|
||||
the optional second argument to avoid recalculating it:
|
||||
|
||||
>>> mu = mean(data)
|
||||
>>> pvariance(data, mu)
|
||||
1.25
|
||||
|
||||
This function does not check that ``mu`` is actually the mean of ``data``.
|
||||
Giving arbitrary values for ``mu`` may lead to invalid or impossible
|
||||
results.
|
||||
|
||||
Decimals and Fractions are supported:
|
||||
|
||||
>>> from decimal import Decimal as D
|
||||
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
||||
Decimal('24.815')
|
||||
|
||||
>>> from fractions import Fraction as F
|
||||
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
|
||||
Fraction(13, 72)
|
||||
|
||||
"""
|
||||
if iter(data) is data:
|
||||
data = list(data)
|
||||
n = len(data)
|
||||
if n < 1:
|
||||
raise StatisticsError('pvariance requires at least one data point')
|
||||
ss = _ss(data, mu)
|
||||
return ss/n
|
||||
|
||||
|
||||
def stdev(data, xbar=None):
|
||||
"""Return the square root of the sample variance.
|
||||
|
||||
See ``variance`` for arguments and other details.
|
||||
|
||||
>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
||||
1.0810874155219827
|
||||
|
||||
"""
|
||||
var = variance(data, xbar)
|
||||
try:
|
||||
return var.sqrt()
|
||||
except AttributeError:
|
||||
return math.sqrt(var)
|
||||
|
||||
|
||||
def pstdev(data, mu=None):
|
||||
"""Return the square root of the population variance.
|
||||
|
||||
See ``pvariance`` for arguments and other details.
|
||||
|
||||
>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
||||
0.986893273527251
|
||||
|
||||
"""
|
||||
var = pvariance(data, mu)
|
||||
try:
|
||||
return var.sqrt()
|
||||
except AttributeError:
|
||||
return math.sqrt(var)
|
File diff suppressed because it is too large
Load Diff
|
@ -59,6 +59,9 @@ Core and Builtins
|
|||
Library
|
||||
-------
|
||||
|
||||
- Issue #18606: Add the new "statistics" module (PEP 450). Contributed
|
||||
by Steven D'Aprano.
|
||||
|
||||
- Issue #12866: The audioop module now supports 24-bit samples.
|
||||
|
||||
- Issue #19254: Provide an optimized Python implementation of pbkdf2_hmac.
|
||||
|
|
Loading…
Reference in New Issue