A quicker astimezone() implementation, rehabilitating an earlier
suggestion from Guido, along with a formal correctness proof of the trickiest bit. The intricacy of the proof reveals how delicate this is, but also how robust the conclusion: correctness doesn't rely on dst() returning +- one hour (not all real time zones do!), it only relies on: 1. That dst() returns a (any) non-zero value if and only if daylight time is in effect. and 2. That the tzinfo subclass implements a consistent notion of time zone. The meaning of "consistent" was a hidden assumption, which is now an explicit requirement in the docs. Alas, it's an unverifiable (by the datetime implementation) requirement, but so it goes.
This commit is contained in:
parent
0233bd9c7d
commit
f36151556f
|
@ -887,10 +887,10 @@ implement all of them.
|
|||
the magnitude of the offset must be less than one day), or a
|
||||
\class{timedelta} object representing a whole number of minutes
|
||||
in the same range. Most implementations of \method{utcoffset()}
|
||||
will probably look like:
|
||||
will probably look like one of these two:
|
||||
|
||||
\begin{verbatim}
|
||||
return CONSTANT # fixed-offset class
|
||||
return CONSTANT # fixed-offset class
|
||||
return CONSTANT + self.dst(dt) # daylight-aware class
|
||||
\end{verbatim}
|
||||
\end{methoddesc}
|
||||
|
@ -905,12 +905,13 @@ implement all of them.
|
|||
rather than a fixed string primarily because some \class{tzinfo} objects
|
||||
will wish to return different names depending on the specific value
|
||||
of \var{dt} passed, especially if the \class{tzinfo} class is
|
||||
accounting for DST.
|
||||
accounting for daylight time.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{dst}{self, dt}
|
||||
Return the DST offset, in minutes east of UTC, or \code{None} if
|
||||
DST information isn't known. Return \code{0} if DST is not in effect.
|
||||
Return the daylight savings time (DST) adjustment, in minutes east of
|
||||
UTC, or \code{None} if DST information isn't known. Return \code{0} if
|
||||
DST is not in effect.
|
||||
If DST is in effect, return the offset as an integer or
|
||||
\class{timedelta} object (see \method{utcoffset()} for details).
|
||||
Note that DST offset, if applicable, has
|
||||
|
@ -919,7 +920,23 @@ implement all of them.
|
|||
unless you're interested in displaying DST info separately. For
|
||||
example, \method{datetimetz.timetuple()} calls its \member{tzinfo}
|
||||
member's \method{dst()} method to determine how the
|
||||
\member{tm_isdst} flag should be set.
|
||||
\member{tm_isdst} flag should be set, and
|
||||
\method{datetimetz.astimezone()} calls \method{dst()} to account for
|
||||
DST changes when crossing time zones.
|
||||
|
||||
An instance \var{tz} of a \class{tzinfo} subclass that models both
|
||||
standard and daylight times must be consistent in this sense:
|
||||
|
||||
\code{tz.utcoffset(dt) - tz.dst(dt)}
|
||||
|
||||
must return the same result for every \class{datetimetz} \var{dt}
|
||||
in a given year with \code{dt.tzinfo==tz} For sane \class{tzinfo}
|
||||
subclasses, this expression yields the time zone's "standard offset"
|
||||
within the year, which should be the same across all days in the year.
|
||||
The implementation of \method{datetimetz.astimezone()} relies on this,
|
||||
but cannot detect violations; it's the programmer's responsibility to
|
||||
ensure it.
|
||||
|
||||
\end{methoddesc}
|
||||
|
||||
These methods are called by a \class{datetimetz} or \class{timetz} object,
|
||||
|
|
|
@ -2703,6 +2703,31 @@ class TestTimezoneConversions(unittest.TestCase):
|
|||
# self.convert_between_tz_and_utc(Eastern, Central) # can't work
|
||||
# self.convert_between_tz_and_utc(Central, Eastern) # can't work
|
||||
|
||||
def test_tricky(self):
|
||||
# 22:00 on day before daylight starts.
|
||||
fourback = self.dston - timedelta(hours=4)
|
||||
ninewest = FixedOffset(-9*60, "-0900", 0)
|
||||
fourback = fourback.astimezone(ninewest)
|
||||
# 22:00-0900 is 7:00 UTC == 2:00 EST == 3:00 DST. Since it's "after
|
||||
# 2", we should get the 3 spelling.
|
||||
# If we plug 22:00 the day before into Eastern, it "looks like std
|
||||
# time", so its offset is returned as -5, and -5 - -9 = 4. Adding 4
|
||||
# to 22:00 lands on 2:00, which makes no sense in local time (the
|
||||
# local clock jumps from 1 to 3). The point here is to make sure we
|
||||
# get the 3 spelling.
|
||||
expected = self.dston.replace(hour=3)
|
||||
got = fourback.astimezone(Eastern).astimezone(None)
|
||||
self.assertEqual(expected, got)
|
||||
|
||||
# Similar, but map to 6:00 UTC == 1:00 EST == 2:00 DST. In that
|
||||
# case we want the 1:00 spelling.
|
||||
sixutc = self.dston.replace(hour=6).astimezone(utc_real)
|
||||
# Now 6:00 "looks like daylight", so the offset wrt Eastern is -4,
|
||||
# and adding -4-0 == -4 gives the 2:00 spelling. We want the 1:00 EST
|
||||
# spelling.
|
||||
expected = self.dston.replace(hour=1)
|
||||
got = sixutc.astimezone(Eastern).astimezone(None)
|
||||
self.assertEqual(expected, got)
|
||||
|
||||
def test_suite():
|
||||
allsuites = [unittest.makeSuite(klass, 'test')
|
||||
|
|
|
@ -4753,8 +4753,9 @@ datetimetz_astimezone(PyDateTime_DateTimeTZ *self, PyObject *args,
|
|||
|
||||
PyObject *result;
|
||||
PyObject *temp;
|
||||
int selfoff, resoff, tempoff, total_added_to_result;
|
||||
int selfoff, resoff, resdst, total_added_to_result;
|
||||
int none;
|
||||
int delta;
|
||||
|
||||
PyObject *tzinfo;
|
||||
static char *keywords[] = {"tz", NULL};
|
||||
|
@ -4788,36 +4789,17 @@ datetimetz_astimezone(PyDateTime_DateTimeTZ *self, PyObject *args,
|
|||
if (none)
|
||||
return result;
|
||||
|
||||
/* Add resoff-selfoff to result. */
|
||||
total_added_to_result = resoff - selfoff;
|
||||
mm += total_added_to_result;
|
||||
if ((mm < 0 || mm >= 60) &&
|
||||
normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
|
||||
goto Fail;
|
||||
temp = new_datetimetz(y, m, d, hh, mm, ss, us, tzinfo);
|
||||
if (temp == NULL)
|
||||
goto Fail;
|
||||
Py_DECREF(result);
|
||||
result = temp;
|
||||
|
||||
/* If tz is a fixed-offset class, we're done, but we can't know
|
||||
* whether it is. If it's a DST-aware class, and we're not near a
|
||||
* DST boundary, we're also done. If we crossed a DST boundary,
|
||||
* the offset will be different now, and that's our only clue.
|
||||
* Unfortunately, we can be in trouble even if we didn't cross a
|
||||
* DST boundary, if we landed on one of the DST "problem hours".
|
||||
/* See the long comment block at the end of this file for an
|
||||
* explanation of this algorithm. That it always works requires a
|
||||
* pretty intricate proof.
|
||||
*/
|
||||
tempoff = call_utcoffset(tzinfo, result, &none);
|
||||
if (tempoff == -1 && PyErr_Occurred())
|
||||
resdst = call_dst(tzinfo, result, &none);
|
||||
if (resdst == -1 && PyErr_Occurred())
|
||||
goto Fail;
|
||||
if (none)
|
||||
goto Inconsistent;
|
||||
|
||||
if (tempoff != resoff) {
|
||||
/* We did cross a boundary. Try to correct. */
|
||||
const int delta = tempoff - resoff;
|
||||
total_added_to_result += delta;
|
||||
mm += delta;
|
||||
/* None and 0 dst() results are the same to us here. Debatable. */
|
||||
total_added_to_result = resoff - resdst - selfoff;
|
||||
if (total_added_to_result != 0) {
|
||||
mm += total_added_to_result;
|
||||
if ((mm < 0 || mm >= 60) &&
|
||||
normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
|
||||
goto Fail;
|
||||
|
@ -4832,50 +4814,42 @@ datetimetz_astimezone(PyDateTime_DateTimeTZ *self, PyObject *args,
|
|||
goto Fail;
|
||||
if (none)
|
||||
goto Inconsistent;
|
||||
}
|
||||
/* If this is the first hour of DST, it may be a local time that
|
||||
* doesn't make sense on the local clock, in which case the naive
|
||||
* hour before it (in standard time) is equivalent and does make
|
||||
* sense on the local clock. So force that.
|
||||
}
|
||||
|
||||
/* The distance now from self to result is
|
||||
* self - result == naive(self) - selfoff - (naive(result) - resoff) ==
|
||||
* naive(self) - selfoff -
|
||||
* ((naive(self) + total_added_to_result - resoff) ==
|
||||
* - selfoff - total_added_to_result + resoff.
|
||||
*/
|
||||
hh -= 1;
|
||||
if (hh < 0 && normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
|
||||
delta = resoff - selfoff - total_added_to_result;
|
||||
|
||||
/* Now self and result are the same UTC time iff delta is 0.
|
||||
* If it is 0, we're done, although that takes some proving.
|
||||
*/
|
||||
if (delta == 0)
|
||||
return result;
|
||||
|
||||
total_added_to_result += delta;
|
||||
mm += delta;
|
||||
if ((mm < 0 || mm >= 60) &&
|
||||
normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
|
||||
goto Fail;
|
||||
|
||||
temp = new_datetimetz(y, m, d, hh, mm, ss, us, tzinfo);
|
||||
if (temp == NULL)
|
||||
goto Fail;
|
||||
tempoff = call_utcoffset(tzinfo, temp, &none);
|
||||
if (tempoff == -1 && PyErr_Occurred()) {
|
||||
Py_DECREF(temp);
|
||||
goto Fail;
|
||||
}
|
||||
if (none) {
|
||||
Py_DECREF(temp);
|
||||
goto Inconsistent;
|
||||
}
|
||||
/* Are temp and result really the same time? temp == result iff
|
||||
* temp - tempoff == result - resoff, iff
|
||||
* (result - HOUR) - tempoff = result - resoff, iff
|
||||
* resoff - tempoff == HOUR
|
||||
*/
|
||||
if (resoff - tempoff == 60) {
|
||||
/* use the local time that makes sense */
|
||||
Py_DECREF(result);
|
||||
return temp;
|
||||
}
|
||||
Py_DECREF(temp);
|
||||
Py_DECREF(result);
|
||||
result = temp;
|
||||
|
||||
/* There's still a problem with the unspellable (in local time)
|
||||
* hour after DST ends. If self and result map to the same UTC time
|
||||
* time, we're OK, else the hour is unrepresentable in the tzinfo
|
||||
* zone. The result's local time now is
|
||||
* self + total_added_to_result, so self == result iff
|
||||
* self - selfoff == result - resoff, iff
|
||||
* self - selfoff == (self + total_added_to_result) - resoff, iff
|
||||
* - selfoff == total_added_to_result - resoff, iff
|
||||
* total_added_to_result == resoff - selfoff
|
||||
*/
|
||||
if (total_added_to_result == resoff - selfoff)
|
||||
resoff = call_utcoffset(tzinfo, result, &none);
|
||||
if (resoff == -1 && PyErr_Occurred())
|
||||
goto Fail;
|
||||
if (none)
|
||||
goto Inconsistent;
|
||||
|
||||
if (resoff - selfoff == total_added_to_result)
|
||||
/* self and result are the same UTC time */
|
||||
return result;
|
||||
|
||||
/* Else there's no way to spell self in zone tzinfo. */
|
||||
|
@ -5498,3 +5472,115 @@ initdatetime(void)
|
|||
if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL)
|
||||
return;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------------
|
||||
Some time zone algebra. For a datetimetz x, let
|
||||
x.n = x stripped of its timezone -- its naive time.
|
||||
x.o = x.utcoffset(), and assuming that doesn't raise an exception or
|
||||
return None
|
||||
x.d = x.dst(), and assuming that doesn't raise an exception or
|
||||
return None
|
||||
x.s = x's standard offset, x.o - x.d
|
||||
|
||||
Now some derived rules, where k is a duration (timedelta).
|
||||
|
||||
1. x.o = x.s + x.d
|
||||
This follows from the definition of x.s.
|
||||
|
||||
2. If x and y have the same tzinfo member, x.s == y.s.
|
||||
This is actually a requirement, an assumption we need to make about
|
||||
sane tzinfo classes.
|
||||
|
||||
3. The naive UTC time corresponding to x is x.n - x.o.
|
||||
This is again a requirement for a sane tzinfo class.
|
||||
|
||||
4. (x+k).s = x.s
|
||||
This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
|
||||
|
||||
5. (y+k).n = y.n + k
|
||||
Again follows from how arithmetic is defined.
|
||||
|
||||
Now we can explain x.astimezone(tz). Let's assume it's an interesting case
|
||||
(meaning that the various tzinfo methods exist, and don't blow up or return
|
||||
None when called).
|
||||
|
||||
The function wants to return a datetimetz y with timezone tz, equivalent to x.
|
||||
|
||||
By #3, we want
|
||||
|
||||
y.n - y.o = x.n - x.o [1]
|
||||
|
||||
The algorithm starts by attaching tz to x.n, and calling that y. So
|
||||
x.n = y.n at the start. Then it wants to add a duration k to y, so that [1]
|
||||
becomes true; in effect, we want to solve [2] for k:
|
||||
|
||||
(y+k).n - (y+k).o = x.n - x.o [2]
|
||||
|
||||
By #1, this is the same as
|
||||
|
||||
(y+k).n - ((y+k).s + (y+k).d) = x.n - x.o [3]
|
||||
|
||||
By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
|
||||
Substituting that into [3],
|
||||
|
||||
x.n + k - (y+k).s - (y+k).d = x.n - x.o; the x.n terms cancel, leaving
|
||||
k - (y+k).s - (y+k).d = - x.o; rearranging,
|
||||
k = (y+k).s - x.o - (y+k).d; by #4, (y+k).s == y.s, so
|
||||
k = y.s - x.o - (y+k).d; then by #1, y.s = y.o - y.d, so
|
||||
k = y.o - y.d - x.o - (y+k).d
|
||||
|
||||
On the RHS, (y+k).d can't be computed directly, but all the rest can be, and
|
||||
we approximate k by ignoring the (y+k).d term at first. Note that k can't
|
||||
be very large, since all offset-returning methods return a duration of
|
||||
magnitude less than 24 hours. For that reason, if y is firmly in std time,
|
||||
(y+k).d must be 0, so ignoring it has no consequence then.
|
||||
|
||||
In any case, the new value is
|
||||
|
||||
z = y + y.o - y.d - x.o
|
||||
|
||||
If
|
||||
z.n - z.o = x.n - x.o [4]
|
||||
|
||||
then, we have an equivalent time, and are almost done. The insecurity here is
|
||||
at the start of daylight time. Picture US Eastern for concreteness. The wall
|
||||
time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
|
||||
sense then. A sensible Eastern tzinfo class will consider such a time to be
|
||||
EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST on the
|
||||
day DST starts. We want to return the 1:MM EST spelling because that's
|
||||
the only spelling that makes sense on the local wall clock.
|
||||
|
||||
Claim: When [4] is true, we have "the right" spelling in this endcase. No
|
||||
further adjustment is necessary.
|
||||
|
||||
Proof: The right spelling has z.d = 0, and the wrong spelling has z.d != 0
|
||||
(for US Eastern, the wrong spelling has z.d = 60 minutes, but we can't assume
|
||||
that all time zones work this way -- we can assume a time zone is in daylight
|
||||
time iff dst() doesn't return 0). By [4], and recalling that z.o = z.s + z.d,
|
||||
|
||||
z.n - z.s - z.d = x.n - x.o [5]
|
||||
|
||||
Also
|
||||
|
||||
z.n = (y + y.o - y.d - x.o).n by the construction of z, which equals
|
||||
y.n + y.o - y.d - x.o by #5.
|
||||
|
||||
Plugging that into [5],
|
||||
|
||||
y.n + y.o - y.d - x.o - z.s - z.d = x.n - x.o; cancelling the x.o terms,
|
||||
y.n + y.o - y.d - z.s - z.d = x.n; but x.n = y.n too, so they also cancel,
|
||||
y.o - y.d - z.s - z.d = 0; then y.o = y.s + y.d, so
|
||||
y.s + y.d - y.d - z.s - z.d = 0; then the y.d terms cancel,
|
||||
y.s - z.s - z.d = 0; but y and z are in the same timezone, so by #2
|
||||
y.s = z.s, and they also cancel, leaving
|
||||
- z.d = 0; or,
|
||||
z.d = 0
|
||||
|
||||
Therefore z is the standard-time spelling, and there's nothing left to do in
|
||||
this case.
|
||||
|
||||
Note that we actually proved something stronger: when [4] is true, it must
|
||||
also be true that z.dst() returns 0.
|
||||
|
||||
XXX Flesh out the rest of the algorithm.
|
||||
--------------------------------------------------------------------------- */
|
||||
|
|
Loading…
Reference in New Issue