Issue #14428, #14397: Implement the PEP 418

* Rename time.steady() to time.monotonic()
 * On Windows, time.monotonic() uses GetTickCount/GetTickCount64() instead of
   QueryPerformanceCounter()
 * time.monotonic() uses CLOCK_HIGHRES if available
 * Add time.get_clock_info(), time.perf_counter() and time.process_time()
   functions
This commit is contained in:
Victor Stinner 2012-04-29 02:41:27 +02:00
parent ca6e40f12a
commit ec89539ccc
9 changed files with 729 additions and 133 deletions

View File

@ -155,6 +155,30 @@ The module defines the following functions and data items:
.. versionadded:: 3.3 .. versionadded:: 3.3
.. class:: clock_info
Clock information object created by :func:`get_clock_info`.
.. attribute:: implementation
name of the underlying C function used to get the clock value
.. attribute:: is_monotonic
``True`` if the clock cannot go backward, ``False`` otherwise
.. attribute:: is_adjusted
``True`` if the clock can be adjusted (e.g. by a NTP daemon),
``False`` otherwise
.. attribute:: resolution
Resolution of the clock in seconds (:class:`float`)
.. versionadded:: 3.3
.. function:: clock_settime(clk_id, time) .. function:: clock_settime(clk_id, time)
Set the time of the specified clock *clk_id*. Set the time of the specified clock *clk_id*.
@ -236,6 +260,22 @@ The module defines the following functions and data items:
Nonzero if a DST timezone is defined. Nonzero if a DST timezone is defined.
.. function:: get_clock_info(name)
Get information on the specified clock as a :class:`clock_info` object.
Supported clock names:
* ``'clock'``: :func:`time.clock`
* ``'monotonic'``: :func:`time.monotonic`
* ``'perf_counter'``: :func:`time.perf_counter`
* ``'process_time'``: :func:`time.process_time`
* ``'time'``: :func:`time.time`
.. versionadded:: 3.3
.. function:: gmtime([secs]) .. function:: gmtime([secs])
Convert a time expressed in seconds since the epoch to a :class:`struct_time` in Convert a time expressed in seconds since the epoch to a :class:`struct_time` in
@ -265,20 +305,43 @@ The module defines the following functions and data items:
The earliest date for which it can generate a time is platform-dependent. The earliest date for which it can generate a time is platform-dependent.
.. function:: steady(strict=False) .. function:: monotonic()
.. index:: Monotonic clock, i.e. cannot go backward. It is not affected by system
single: benchmarking clock updates. The reference point of the returned value is undefined, so
that only the difference between the results of consecutive calls is valid
and is a number of seconds.
Return the current time as a floating point number expressed in seconds. On Windows versions older than Vista, :func:`monotonic` detects
This clock advances at a steady rate relative to real time and it may not be :c:func:`GetTickCount` integer overflow (32 bits, roll-over after 49.7
adjusted. The reference point of the returned value is undefined so only the days). It increases an internal epoch (reference time by) 2\ :sup:`32` each
difference of consecutive calls is valid. time that an overflow is detected. The epoch is stored in the process-local
state and so the value of :func:`monotonic` may be different in two Python
processes running for more than 49 days. On more recent versions of Windows
and on other operating systems, :func:`monotonic` is system-wide.
If available, a monotonic clock is used. By default, Availability: Windows, Mac OS X, Linux, FreeBSD, OpenBSD, Solaris.
the function falls back to another clock if the monotonic clock failed or is
not available. If *strict* is True, raise an :exc:`OSError` on error or .. versionadded:: 3.3
:exc:`NotImplementedError` if no monotonic clock is available.
.. function:: perf_counter()
Performance counter with the highest available resolution to measure a short
duration. It does include time elapsed during sleep and is system-wide.
The reference point of the returned value is undefined, so that only the
difference between the results of consecutive calls is valid and is a number
of seconds.
.. versionadded:: 3.3
.. function:: process_time()
Sum of the system and user CPU time of the current process. It does not
include time elapsed during sleep. It is process-wide by definition. The
reference point of the returned value is undefined, so that only the
difference between the results of consecutive calls is valid.
.. versionadded:: 3.3 .. versionadded:: 3.3

View File

@ -1059,12 +1059,20 @@ sys
time time
---- ----
The :mod:`time` module has new functions: The :pep:`418` added new functions to the :mod:`time` module:
* :func:`~time.clock_getres` and :func:`~time.clock_gettime` functions and * :func:`~time.get_clock_info`: Get information on a clock.
``CLOCK_xxx`` constants. * :func:`~time.monotonic`: Monotonic clock (cannot go backward), not affected
* :func:`~time.steady`. by system clock updates.
* :func:`~time.perf_counter`: Performance counter with the highest available
resolution to measure a short duration.
* :func:`~time.process_time`: Sum of the system and user CPU time of the
current process.
Other new functions:
* :func:`~time.clock_getres`, :func:`~time.clock_gettime` and
:func:`~time.clock_settime` functions with ``CLOCK_xxx`` constants.
(Contributed by Victor Stinner in :issue:`10278`) (Contributed by Victor Stinner in :issue:`10278`)

View File

@ -22,11 +22,25 @@ typedef struct {
} _PyTime_timeval; } _PyTime_timeval;
#endif #endif
/* Structure used by time.get_clock_info() */
typedef struct {
const char *implementation;
int is_monotonic;
int is_adjusted;
double resolution;
} _Py_clock_info_t;
/* Similar to POSIX gettimeofday but cannot fail. If system gettimeofday /* Similar to POSIX gettimeofday but cannot fail. If system gettimeofday
* fails or is not available, fall back to lower resolution clocks. * fails or is not available, fall back to lower resolution clocks.
*/ */
PyAPI_FUNC(void) _PyTime_gettimeofday(_PyTime_timeval *tp); PyAPI_FUNC(void) _PyTime_gettimeofday(_PyTime_timeval *tp);
/* Similar to _PyTime_gettimeofday() but retrieve also information on the
* clock used to get the current time. */
PyAPI_FUNC(void) _PyTime_gettimeofday_info(
_PyTime_timeval *tp,
_Py_clock_info_t *info);
#define _PyTime_ADD_SECONDS(tv, interval) \ #define _PyTime_ADD_SECONDS(tv, interval) \
do { \ do { \
tv.tv_usec += (long) (((long) interval - interval) * 1000000); \ tv.tv_usec += (long) (((long) interval - interval) * 1000000); \

View File

@ -6,7 +6,10 @@ except ImportError:
import dummy_threading as threading import dummy_threading as threading
from collections import deque from collections import deque
from heapq import heappush, heappop from heapq import heappush, heappop
from time import steady as time try:
from time import monotonic as time
except ImportError:
from time import time
__all__ = ['Empty', 'Full', 'Queue', 'PriorityQueue', 'LifoQueue'] __all__ = ['Empty', 'Full', 'Queue', 'PriorityQueue', 'LifoQueue']

View File

@ -5,6 +5,10 @@ import locale
import sysconfig import sysconfig
import sys import sys
import platform import platform
try:
import threading
except ImportError:
threading = None
# Max year is only limited by the size of C int. # Max year is only limited by the size of C int.
SIZEOF_INT = sysconfig.get_config_var('SIZEOF_INT') or 4 SIZEOF_INT = sysconfig.get_config_var('SIZEOF_INT') or 4
@ -23,9 +27,20 @@ class TimeTestCase(unittest.TestCase):
time.timezone time.timezone
time.tzname time.tzname
def test_time(self):
time.time()
info = time.get_clock_info('time')
self.assertEqual(info.is_monotonic, False)
if sys.platform != 'win32':
self.assertEqual(info.is_adjusted, True)
def test_clock(self): def test_clock(self):
time.clock() time.clock()
info = time.get_clock_info('clock')
self.assertEqual(info.is_monotonic, True)
self.assertEqual(info.is_adjusted, False)
@unittest.skipUnless(hasattr(time, 'clock_gettime'), @unittest.skipUnless(hasattr(time, 'clock_gettime'),
'need time.clock_gettime()') 'need time.clock_gettime()')
def test_clock_realtime(self): def test_clock_realtime(self):
@ -56,7 +71,9 @@ class TimeTestCase(unittest.TestCase):
except PermissionError: except PermissionError:
pass pass
self.assertRaises(OSError, time.clock_settime, time.CLOCK_MONOTONIC, 0) if hasattr(time, 'CLOCK_MONOTONIC'):
self.assertRaises(OSError,
time.clock_settime, time.CLOCK_MONOTONIC, 0)
def test_conversions(self): def test_conversions(self):
self.assertEqual(time.ctime(self.t), self.assertEqual(time.ctime(self.t),
@ -342,23 +359,69 @@ class TimeTestCase(unittest.TestCase):
pass pass
self.assertEqual(time.strftime('%Z', tt), tzname) self.assertEqual(time.strftime('%Z', tt), tzname)
def test_steady(self): @unittest.skipUnless(hasattr(time, 'monotonic'),
t1 = time.steady() 'need time.monotonic')
def test_monotonic(self):
t1 = time.monotonic()
time.sleep(0.1) time.sleep(0.1)
t2 = time.steady() t2 = time.monotonic()
dt = t2 - t1 dt = t2 - t1
# may fail if the system clock was changed
self.assertGreater(t2, t1) self.assertGreater(t2, t1)
self.assertAlmostEqual(dt, 0.1, delta=0.2) self.assertAlmostEqual(dt, 0.1, delta=0.2)
def test_steady_strict(self): info = time.get_clock_info('monotonic')
self.assertEqual(info.is_monotonic, True)
if sys.platform == 'linux':
self.assertEqual(info.is_adjusted, True)
else:
self.assertEqual(info.is_adjusted, False)
def test_perf_counter(self):
time.perf_counter()
def test_process_time(self):
start = time.process_time()
time.sleep(0.1)
stop = time.process_time()
self.assertLess(stop - start, 0.01)
info = time.get_clock_info('process_time')
self.assertEqual(info.is_monotonic, True)
self.assertEqual(info.is_adjusted, False)
@unittest.skipUnless(threading,
'need threading')
def test_process_time_threads(self):
class BusyThread(threading.Thread):
def run(self):
while not self.stop:
pass
thread = BusyThread()
thread.stop = False
t1 = time.process_time()
thread.start()
time.sleep(0.2)
t2 = time.process_time()
thread.stop = True
thread.join()
self.assertGreater(t2 - t1, 0.1)
@unittest.skipUnless(hasattr(time, 'monotonic'),
'need time.monotonic')
@unittest.skipUnless(hasattr(time, 'clock_settime'),
'need time.clock_settime')
def test_monotonic_settime(self):
t1 = time.monotonic()
realtime = time.clock_gettime(time.CLOCK_REALTIME)
# jump backward with an offset of 1 hour
try: try:
t1 = time.steady(strict=True) time.clock_settime(time.CLOCK_REALTIME, realtime - 3600)
except OSError as err: except PermissionError as err:
self.skipTest("the monotonic clock failed: %s" % err) self.skipTest(err)
except NotImplementedError: t2 = time.monotonic()
self.skipTest("no monotonic clock available") time.clock_settime(time.CLOCK_REALTIME, realtime)
t2 = time.steady(strict=True) # monotonic must not be affected by system clock updates
self.assertGreaterEqual(t2, t1) self.assertGreaterEqual(t2, t1)
def test_localtime_failure(self): def test_localtime_failure(self):
@ -378,6 +441,26 @@ class TimeTestCase(unittest.TestCase):
self.assertRaises(OSError, time.localtime, invalid_time_t) self.assertRaises(OSError, time.localtime, invalid_time_t)
self.assertRaises(OSError, time.ctime, invalid_time_t) self.assertRaises(OSError, time.ctime, invalid_time_t)
def test_get_clock_info(self):
clocks = ['clock', 'perf_counter', 'process_time', 'time']
if hasattr(time, 'monotonic'):
clocks.append('monotonic')
for name in clocks:
info = time.get_clock_info(name)
#self.assertIsInstance(info, dict)
self.assertIsInstance(info.implementation, str)
self.assertNotEqual(info.implementation, '')
self.assertIsInstance(info.is_monotonic, bool)
self.assertIsInstance(info.resolution, float)
# 0.0 < resolution <= 1.0
self.assertGreater(info.resolution, 0.0)
self.assertLessEqual(info.resolution, 1.0)
self.assertIsInstance(info.is_adjusted, bool)
self.assertRaises(ValueError, time.get_clock_info, 'xxx')
class TestLocale(unittest.TestCase): class TestLocale(unittest.TestCase):
def setUp(self): def setUp(self):
self.oldloc = locale.setlocale(locale.LC_ALL) self.oldloc = locale.setlocale(locale.LC_ALL)

View File

@ -3,7 +3,11 @@
import sys as _sys import sys as _sys
import _thread import _thread
from time import steady as _time, sleep as _sleep from time import sleep as _sleep
try:
from time import monotonic as _time
except ImportError:
from time import time as _time
from traceback import format_exc as _format_exc from traceback import format_exc as _format_exc
from _weakrefset import WeakSet from _weakrefset import WeakSet

View File

@ -81,6 +81,10 @@ Core and Builtins
Library Library
------- -------
- Issue #14428: Implement the PEP 418. Add time.get_clock_info(),
time.perf_counter() and time.process_time() functions, and rename
time.steady() to time.monotonic().
- Issue #14646: importlib.util.module_for_loader() now sets __loader__ and - Issue #14646: importlib.util.module_for_loader() now sets __loader__ and
__package__ (when possible). __package__ (when possible).

View File

@ -4,9 +4,17 @@
#include <ctype.h> #include <ctype.h>
#ifdef HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#ifdef HAVE_SYS_TYPES_H #ifdef HAVE_SYS_TYPES_H
#include <sys/types.h> #include <sys/types.h>
#endif /* HAVE_SYS_TYPES_H */ #endif
#if defined(HAVE_SYS_RESOURCE_H)
#include <sys/resource.h>
#endif
#ifdef QUICKWIN #ifdef QUICKWIN
#include <io.h> #include <io.h>
@ -45,12 +53,16 @@
/* Forward declarations */ /* Forward declarations */
static int floatsleep(double); static int floatsleep(double);
static PyObject* floattime(void); static PyObject* floattime(_Py_clock_info_t *info);
#ifdef MS_WINDOWS
static OSVERSIONINFOEX winver;
#endif
static PyObject * static PyObject *
time_time(PyObject *self, PyObject *unused) time_time(PyObject *self, PyObject *unused)
{ {
return floattime(); return floattime(NULL);
} }
PyDoc_STRVAR(time_doc, PyDoc_STRVAR(time_doc,
@ -70,7 +82,7 @@ Fractions of a second may be present if the system clock provides them.");
#endif #endif
static PyObject * static PyObject *
pyclock(void) floatclock(_Py_clock_info_t *info)
{ {
clock_t value; clock_t value;
value = clock(); value = clock();
@ -80,15 +92,22 @@ pyclock(void)
"or its value cannot be represented"); "or its value cannot be represented");
return NULL; return NULL;
} }
if (info) {
info->implementation = "clock()";
info->resolution = 1.0 / (double)CLOCKS_PER_SEC;
info->is_monotonic = 1;
info->is_adjusted = 0;
}
return PyFloat_FromDouble((double)value / CLOCKS_PER_SEC); return PyFloat_FromDouble((double)value / CLOCKS_PER_SEC);
} }
#endif /* HAVE_CLOCK */ #endif /* HAVE_CLOCK */
#if defined(MS_WINDOWS) && !defined(__BORLANDC__) #if defined(MS_WINDOWS) && !defined(__BORLANDC__)
#define WIN32_PERF_COUNTER
/* Win32 has better clock replacement; we have our own version, due to Mark /* Win32 has better clock replacement; we have our own version, due to Mark
Hammond and Tim Peters */ Hammond and Tim Peters */
static PyObject * static int
win32_clock(int fallback) win_perf_counter(_Py_clock_info_t *info, PyObject **result)
{ {
static LONGLONG cpu_frequency = 0; static LONGLONG cpu_frequency = 0;
static LONGLONG ctrStart; static LONGLONG ctrStart;
@ -102,28 +121,41 @@ win32_clock(int fallback)
if (!QueryPerformanceFrequency(&freq) || freq.QuadPart == 0) { if (!QueryPerformanceFrequency(&freq) || freq.QuadPart == 0) {
/* Unlikely to happen - this works on all intel /* Unlikely to happen - this works on all intel
machines at least! Revert to clock() */ machines at least! Revert to clock() */
if (fallback) *result = NULL;
return pyclock(); return -1;
else
return PyErr_SetFromWindowsErr(0);
} }
cpu_frequency = freq.QuadPart; cpu_frequency = freq.QuadPart;
} }
QueryPerformanceCounter(&now); QueryPerformanceCounter(&now);
diff = (double)(now.QuadPart - ctrStart); diff = (double)(now.QuadPart - ctrStart);
return PyFloat_FromDouble(diff / (double)cpu_frequency); if (info) {
info->implementation = "QueryPerformanceCounter()";
info->resolution = 1.0 / (double)cpu_frequency;
info->is_monotonic = 1;
info->is_adjusted = 0;
}
*result = PyFloat_FromDouble(diff / (double)cpu_frequency);
return 0;
} }
#endif #endif
#if (defined(MS_WINDOWS) && !defined(__BORLANDC__)) || defined(HAVE_CLOCK) #if defined(WIN32_PERF_COUNTER) || defined(HAVE_CLOCK)
#define PYCLOCK
static PyObject*
pyclock(_Py_clock_info_t *info)
{
#ifdef WIN32_PERF_COUNTER
PyObject *res;
if (win_perf_counter(info, &res) == 0)
return res;
#endif
return floatclock(info);
}
static PyObject * static PyObject *
time_clock(PyObject *self, PyObject *unused) time_clock(PyObject *self, PyObject *unused)
{ {
#if defined(MS_WINDOWS) && !defined(__BORLANDC__) return pyclock(NULL);
return win32_clock(1);
#else
return pyclock();
#endif
} }
PyDoc_STRVAR(clock_doc, PyDoc_STRVAR(clock_doc,
@ -150,7 +182,6 @@ time_clock_gettime(PyObject *self, PyObject *args)
PyErr_SetFromErrno(PyExc_IOError); PyErr_SetFromErrno(PyExc_IOError);
return NULL; return NULL;
} }
return PyFloat_FromDouble(tp.tv_sec + tp.tv_nsec * 1e-9); return PyFloat_FromDouble(tp.tv_sec + tp.tv_nsec * 1e-9);
} }
@ -787,11 +818,74 @@ the local timezone used by methods such as localtime, but this behaviour\n\
should not be relied on."); should not be relied on.");
#endif /* HAVE_WORKING_TZSET */ #endif /* HAVE_WORKING_TZSET */
#if defined(MS_WINDOWS) || defined(__APPLE__) \
|| (defined(HAVE_CLOCK_GETTIME) \
&& (defined(CLOCK_HIGHRES) || defined(CLOCK_MONOTONIC)))
#define PYMONOTONIC
#endif
#ifdef PYMONOTONIC
static PyObject* static PyObject*
steady_clock(int strict) pymonotonic(_Py_clock_info_t *info)
{ {
#if defined(MS_WINDOWS) && !defined(__BORLANDC__) #if defined(MS_WINDOWS)
return win32_clock(!strict); static ULONGLONG (*GetTickCount64) (void) = NULL;
static ULONGLONG (CALLBACK *Py_GetTickCount64)(void);
static int has_getickcount64 = -1;
double result;
if (has_getickcount64 == -1) {
/* GetTickCount64() was added to Windows Vista */
if (winver.dwMajorVersion >= 6) {
HINSTANCE hKernel32;
hKernel32 = GetModuleHandleW(L"KERNEL32");
*(FARPROC*)&Py_GetTickCount64 = GetProcAddress(hKernel32,
"GetTickCount64");
has_getickcount64 = (Py_GetTickCount64 != NULL);
}
else
has_getickcount64 = 0;
}
if (has_getickcount64) {
ULONGLONG ticks;
ticks = Py_GetTickCount64();
result = (double)ticks * 1e-3;
}
else {
static DWORD last_ticks = 0;
static DWORD n_overflow = 0;
DWORD ticks;
ticks = GetTickCount();
if (ticks < last_ticks)
n_overflow++;
last_ticks = ticks;
result = ldexp(n_overflow, 32);
result += ticks;
result *= 1e-3;
}
if (info) {
DWORD timeAdjustment, timeIncrement;
BOOL isTimeAdjustmentDisabled, ok;
if (has_getickcount64)
info->implementation = "GetTickCount64()";
else
info->implementation = "GetTickCount()";
info->is_monotonic = 1;
ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
&isTimeAdjustmentDisabled);
if (!ok) {
PyErr_SetFromWindowsErr(0);
return NULL;
}
info->resolution = timeIncrement * 1e-7;
info->is_adjusted = 0;
}
return PyFloat_FromDouble(result);
#elif defined(__APPLE__) #elif defined(__APPLE__)
static mach_timebase_info_data_t timebase; static mach_timebase_info_data_t timebase;
uint64_t time; uint64_t time;
@ -805,88 +899,338 @@ steady_clock(int strict)
time = mach_absolute_time(); time = mach_absolute_time();
secs = (double)time * timebase.numer / timebase.denom * 1e-9; secs = (double)time * timebase.numer / timebase.denom * 1e-9;
if (info) {
info->implementation = "mach_absolute_time()";
info->resolution = (double)timebase.numer / timebase.denom * 1e-9;
info->is_monotonic = 1;
info->is_adjusted = 0;
}
return PyFloat_FromDouble(secs); return PyFloat_FromDouble(secs);
#elif defined(HAVE_CLOCK_GETTIME)
static int steady_clk_index = 0; #elif defined(HAVE_CLOCK_GETTIME) && (defined(CLOCK_HIGHRES) || defined(CLOCK_MONOTONIC))
static int monotonic_clk_index = 0;
int *clk_index;
clockid_t steady_clk_ids[] = {
#ifdef CLOCK_MONOTONIC_RAW
CLOCK_MONOTONIC_RAW,
#endif
CLOCK_MONOTONIC,
CLOCK_REALTIME
};
clockid_t monotonic_clk_ids[] = {
#ifdef CLOCK_MONOTONIC_RAW
CLOCK_MONOTONIC_RAW,
#endif
CLOCK_MONOTONIC
};
clockid_t *clk_ids;
int clk_ids_len;
int ret;
struct timespec tp; struct timespec tp;
#ifdef CLOCK_HIGHRES
const clockid_t clk_id = CLOCK_HIGHRES;
const char *function = "clock_gettime(CLOCK_HIGHRES)";
#else
const clockid_t clk_id = CLOCK_MONOTONIC;
const char *function = "clock_gettime(CLOCK_MONOTONIC)";
#endif
if (strict) { if (clock_gettime(clk_id, &tp) != 0) {
clk_index = &monotonic_clk_index;
clk_ids = monotonic_clk_ids;
clk_ids_len = Py_ARRAY_LENGTH(monotonic_clk_ids);
}
else {
clk_index = &steady_clk_index;
clk_ids = steady_clk_ids;
clk_ids_len = Py_ARRAY_LENGTH(steady_clk_ids);
}
while (0 <= *clk_index) {
clockid_t clk_id = clk_ids[*clk_index];
ret = clock_gettime(clk_id, &tp);
if (ret == 0)
return PyFloat_FromDouble(tp.tv_sec + tp.tv_nsec * 1e-9);
(*clk_index)++;
if (clk_ids_len <= *clk_index)
(*clk_index) = -1;
}
if (strict) {
PyErr_SetFromErrno(PyExc_OSError); PyErr_SetFromErrno(PyExc_OSError);
return NULL; return NULL;
} }
return floattime();
if (info) {
struct timespec res;
info->is_monotonic = 1;
info->implementation = function;
#if (defined(linux) || defined(__linux) || defined(__linux__)) \
&& !defined(CLOCK_HIGHRES)
/* CLOCK_MONOTONIC is adjusted on Linux */
info->is_adjusted = 1;
#else #else
if (strict) { info->is_adjusted = 0;
PyErr_SetString(PyExc_NotImplementedError, #endif
"no steady clock available on your platform"); if (clock_getres(clk_id, &res) == 0)
return NULL; info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
else
info->resolution = 1e-9;
} }
return floattime(); return PyFloat_FromDouble(tp.tv_sec + tp.tv_nsec * 1e-9);
#endif #endif
} }
static PyObject * static PyObject *
time_steady(PyObject *self, PyObject *args, PyObject *kwargs) time_monotonic(PyObject *self, PyObject *unused)
{ {
static char *kwlist[] = {"strict", NULL}; return pymonotonic(NULL);
int strict = 0;
if (!PyArg_ParseTupleAndKeywords(
args, kwargs, "|i:steady", kwlist,
&strict))
return NULL;
return steady_clock(strict);
} }
PyDoc_STRVAR(steady_doc, PyDoc_STRVAR(monotonic_doc,
"steady(strict=False) -> float\n\ "monotonic() -> float\n\
\n\ \n\
Return the current time as a floating point number expressed in seconds.\n\ Monotonic clock, cannot go backward.");
This clock advances at a steady rate relative to real time and it may not\n\ #endif /* PYMONOTONIC */
be adjusted. The reference point of the returned value is undefined so only\n\
the difference of consecutive calls is valid.");
static PyObject*
perf_counter(_Py_clock_info_t *info)
{
#if defined(WIN32_PERF_COUNTER) || defined(PYMONOTONIC)
PyObject *res;
#endif
#if defined(WIN32_PERF_COUNTER)
static int use_perf_counter = 1;
#endif
#ifdef PYMONOTONIC
static int use_monotonic = 1;
#endif
#ifdef WIN32_PERF_COUNTER
if (use_perf_counter) {
if (win_perf_counter(info, &res) == 0)
return res;
use_perf_counter = 0;
}
#endif
#ifdef PYMONOTONIC
if (use_monotonic) {
res = pymonotonic(info);
if (res != NULL)
return res;
use_monotonic = 0;
PyErr_Clear();
}
#endif
return floattime(info);
}
static PyObject *
time_perf_counter(PyObject *self, PyObject *unused)
{
return perf_counter(NULL);
}
PyDoc_STRVAR(perf_counter_doc,
"perf_counter() -> float\n\
\n\
Performance counter for benchmarking.");
static PyObject*
py_process_time(_Py_clock_info_t *info)
{
#if defined(MS_WINDOWS)
HANDLE process;
FILETIME creation_time, exit_time, kernel_time, user_time;
ULARGE_INTEGER large;
double total;
BOOL ok;
process = GetCurrentProcess();
ok = GetProcessTimes(process, &creation_time, &exit_time, &kernel_time, &user_time);
if (!ok)
return PyErr_SetFromWindowsErr(0);
large.u.LowPart = kernel_time.dwLowDateTime;
large.u.HighPart = kernel_time.dwHighDateTime;
total = (double)large.QuadPart;
large.u.LowPart = user_time.dwLowDateTime;
large.u.HighPart = user_time.dwHighDateTime;
total += (double)large.QuadPart;
if (info) {
info->implementation = "GetProcessTimes()";
info->resolution = 1e-7;
info->is_monotonic = 1;
info->is_adjusted = 0;
}
return PyFloat_FromDouble(total * 1e-7);
#else
#if defined(HAVE_SYS_RESOURCE_H)
struct rusage ru;
#endif
#ifdef HAVE_TIMES
struct tms t;
static long ticks_per_second = -1;
#endif
#if defined(HAVE_CLOCK_GETTIME) \
&& (defined(CLOCK_PROCESS_CPUTIME_ID) || defined(CLOCK_PROF))
struct timespec tp;
#ifdef CLOCK_PROF
const clockid_t clk_id = CLOCK_PROF;
const char *function = "clock_gettime(CLOCK_PROF)";
#else
const clockid_t clk_id = CLOCK_PROCESS_CPUTIME_ID;
const char *function = "clock_gettime(CLOCK_PROCESS_CPUTIME_ID)";
#endif
if (clock_gettime(clk_id, &tp) == 0) {
if (info) {
struct timespec res;
info->implementation = function;
info->is_monotonic = 1;
info->is_adjusted = 0;
if (clock_getres(clk_id, &res) == 0)
info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
else
info->resolution = 1e-9;
}
return PyFloat_FromDouble(tp.tv_sec + tp.tv_nsec * 1e-9);
}
#endif
#if defined(HAVE_SYS_RESOURCE_H)
if (getrusage(RUSAGE_SELF, &ru) == 0) {
double total;
total = ru.ru_utime.tv_sec + ru.ru_utime.tv_usec * 1e-6;
total += ru.ru_stime.tv_sec + ru.ru_stime.tv_usec * 1e-6;
if (info) {
info->implementation = "getrusage(RUSAGE_SELF)";
info->is_monotonic = 1;
info->is_adjusted = 0;
info->resolution = 1e-6;
}
return PyFloat_FromDouble(total);
}
#endif
#ifdef HAVE_TIMES
if (times(&t) != (clock_t)-1) {
double total;
if (ticks_per_second == -1) {
#if defined(HAVE_SYSCONF) && defined(_SC_CLK_TCK)
ticks_per_second = sysconf(_SC_CLK_TCK);
if (ticks_per_second < 1)
ticks_per_second = -1;
#elif defined(HZ)
ticks_per_second = HZ;
#else
ticks_per_second = 60; /* magic fallback value; may be bogus */
#endif
}
if (ticks_per_second != -1) {
total = (double)t.tms_utime / ticks_per_second;
total += (double)t.tms_stime / ticks_per_second;
if (info) {
info->implementation = "times()";
info->is_monotonic = 1;
info->is_adjusted = 0;
info->resolution = 1.0 / ticks_per_second;
}
return PyFloat_FromDouble(total);
}
}
#endif
return floatclock(info);
#endif
}
static PyObject *
time_process_time(PyObject *self, PyObject *unused)
{
return py_process_time(NULL);
}
PyDoc_STRVAR(process_time_doc,
"process_time() -> float\n\
\n\
Process time for profiling: sum of the kernel and user-space CPU time.");
static PyTypeObject ClockInfoType;
PyDoc_STRVAR(ClockInfo_docstring,
"Clock information");
static PyStructSequence_Field ClockInfo_fields[] = {
{"implementation", "name of the underlying C function "
"used to get the clock value"},
{"is_monotonic", "True if the clock cannot go backward, False otherwise"},
{"is_adjusted", "True if the clock can be adjusted "
"(e.g. by a NTP daemon), False otherwise"},
{"resolution", "resolution of the clock in seconds"},
{NULL, NULL}
};
static PyStructSequence_Desc ClockInfo_desc = {
"time.clock_info",
ClockInfo_docstring,
ClockInfo_fields,
4,
};
static PyObject *
time_get_clock_info(PyObject *self, PyObject *args)
{
char *name;
PyObject *obj;
_Py_clock_info_t info;
PyObject *result;
if (!PyArg_ParseTuple(args, "s:get_clock_info", &name))
return NULL;
#ifdef Py_DEBUG
info.implementation = NULL;
info.is_monotonic = -1;
info.is_adjusted = -1;
info.resolution = -1.0;
#else
info.implementation = "";
info.is_monotonic = 0;
info.is_adjusted = 0;
info.resolution = 1.0;
#endif
if (strcmp(name, "time") == 0)
obj = floattime(&info);
#ifdef PYCLOCK
else if (strcmp(name, "clock") == 0)
obj = pyclock(&info);
#endif
#ifdef PYMONOTONIC
else if (strcmp(name, "monotonic") == 0)
obj = pymonotonic(&info);
#endif
else if (strcmp(name, "perf_counter") == 0)
obj = perf_counter(&info);
else if (strcmp(name, "process_time") == 0)
obj = py_process_time(&info);
else {
PyErr_SetString(PyExc_ValueError, "unknown clock");
return NULL;
}
if (obj == NULL)
return NULL;
Py_DECREF(obj);
result = PyStructSequence_New(&ClockInfoType);
if (result == NULL)
return NULL;
assert(info.implementation != NULL);
obj = PyUnicode_FromString(info.implementation);
if (obj == NULL)
goto error;
PyStructSequence_SET_ITEM(result, 0, obj);
assert(info.is_monotonic != -1);
obj = PyBool_FromLong(info.is_monotonic);
if (obj == NULL)
goto error;
PyStructSequence_SET_ITEM(result, 1, obj);
assert(info.is_adjusted != -1);
obj = PyBool_FromLong(info.is_adjusted);
if (obj == NULL)
goto error;
PyStructSequence_SET_ITEM(result, 2, obj);
assert(info.resolution > 0.0);
assert(info.resolution <= 1.0);
obj = PyFloat_FromDouble(info.resolution);
if (obj == NULL)
goto error;
PyStructSequence_SET_ITEM(result, 3, obj);
return result;
error:
Py_DECREF(result);
return NULL;
}
PyDoc_STRVAR(get_clock_info_doc,
"get_clock_info(name: str) -> dict\n\
\n\
Get information of the specified clock.");
static void static void
PyInit_timezone(PyObject *m) { PyInit_timezone(PyObject *m) {
@ -977,10 +1321,8 @@ PyInit_timezone(PyObject *m) {
#endif /* __CYGWIN__ */ #endif /* __CYGWIN__ */
#endif /* !HAVE_TZNAME || __GLIBC__ || __CYGWIN__*/ #endif /* !HAVE_TZNAME || __GLIBC__ || __CYGWIN__*/
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_GETRES) #if defined(HAVE_CLOCK_GETTIME)
#ifdef CLOCK_REALTIME
PyModule_AddIntMacro(m, CLOCK_REALTIME); PyModule_AddIntMacro(m, CLOCK_REALTIME);
#endif
#ifdef CLOCK_MONOTONIC #ifdef CLOCK_MONOTONIC
PyModule_AddIntMacro(m, CLOCK_MONOTONIC); PyModule_AddIntMacro(m, CLOCK_MONOTONIC);
#endif #endif
@ -1002,7 +1344,7 @@ PyInit_timezone(PyObject *m) {
static PyMethodDef time_methods[] = { static PyMethodDef time_methods[] = {
{"time", time_time, METH_NOARGS, time_doc}, {"time", time_time, METH_NOARGS, time_doc},
#if (defined(MS_WINDOWS) && !defined(__BORLANDC__)) || defined(HAVE_CLOCK) #ifdef PYCLOCK
{"clock", time_clock, METH_NOARGS, clock_doc}, {"clock", time_clock, METH_NOARGS, clock_doc},
#endif #endif
#ifdef HAVE_CLOCK_GETTIME #ifdef HAVE_CLOCK_GETTIME
@ -1018,8 +1360,6 @@ static PyMethodDef time_methods[] = {
#ifdef HAVE_MKTIME #ifdef HAVE_MKTIME
{"mktime", time_mktime, METH_O, mktime_doc}, {"mktime", time_mktime, METH_O, mktime_doc},
#endif #endif
{"steady", (PyCFunction)time_steady, METH_VARARGS|METH_KEYWORDS,
steady_doc},
#ifdef HAVE_STRFTIME #ifdef HAVE_STRFTIME
{"strftime", time_strftime, METH_VARARGS, strftime_doc}, {"strftime", time_strftime, METH_VARARGS, strftime_doc},
#endif #endif
@ -1027,6 +1367,12 @@ static PyMethodDef time_methods[] = {
#ifdef HAVE_WORKING_TZSET #ifdef HAVE_WORKING_TZSET
{"tzset", time_tzset, METH_NOARGS, tzset_doc}, {"tzset", time_tzset, METH_NOARGS, tzset_doc},
#endif #endif
#ifdef PYMONOTONIC
{"monotonic", time_monotonic, METH_NOARGS, monotonic_doc},
#endif
{"process_time", time_process_time, METH_NOARGS, process_time_doc},
{"perf_counter", time_perf_counter, METH_NOARGS, perf_counter_doc},
{"get_clock_info", time_get_clock_info, METH_VARARGS, get_clock_info_doc},
{NULL, NULL} /* sentinel */ {NULL, NULL} /* sentinel */
}; };
@ -1104,6 +1450,20 @@ PyInit_time(void)
if (!initialized) { if (!initialized) {
PyStructSequence_InitType(&StructTimeType, PyStructSequence_InitType(&StructTimeType,
&struct_time_type_desc); &struct_time_type_desc);
/* initialize ClockInfoType */
PyStructSequence_InitType(&ClockInfoType, &ClockInfo_desc);
Py_INCREF(&ClockInfoType);
PyModule_AddObject(m, "clock_info", (PyObject*)&ClockInfoType);
#ifdef MS_WINDOWS
winver.dwOSVersionInfoSize = sizeof(winver);
if (!GetVersionEx((OSVERSIONINFO*)&winver)) {
Py_DECREF(m);
PyErr_SetFromWindowsErr(0);
return NULL;
}
#endif
} }
Py_INCREF(&StructTimeType); Py_INCREF(&StructTimeType);
PyModule_AddObject(m, "struct_time", (PyObject*) &StructTimeType); PyModule_AddObject(m, "struct_time", (PyObject*) &StructTimeType);
@ -1112,7 +1472,7 @@ PyInit_time(void)
} }
static PyObject* static PyObject*
floattime(void) floattime(_Py_clock_info_t *info)
{ {
_PyTime_timeval t; _PyTime_timeval t;
#ifdef HAVE_CLOCK_GETTIME #ifdef HAVE_CLOCK_GETTIME
@ -1123,10 +1483,21 @@ floattime(void)
because it would require to link Python to the rt (real-time) because it would require to link Python to the rt (real-time)
library, at least on Linux */ library, at least on Linux */
ret = clock_gettime(CLOCK_REALTIME, &tp); ret = clock_gettime(CLOCK_REALTIME, &tp);
if (ret == 0) if (ret == 0) {
if (info) {
struct timespec res;
info->implementation = "clock_gettime(CLOCK_REALTIME)";
info->is_monotonic = 0;
info->is_adjusted = 1;
if (clock_getres(CLOCK_REALTIME, &res) == 0)
info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
else
info->resolution = 1e-9;
}
return PyFloat_FromDouble(tp.tv_sec + tp.tv_nsec * 1e-9); return PyFloat_FromDouble(tp.tv_sec + tp.tv_nsec * 1e-9);
}
#endif #endif
_PyTime_gettimeofday(&t); _PyTime_gettimeofday_info(&t, info);
return PyFloat_FromDouble((double)t.tv_sec + t.tv_usec * 1e-6); return PyFloat_FromDouble((double)t.tv_sec + t.tv_usec * 1e-6);
} }

View File

@ -18,8 +18,8 @@
extern int ftime(struct timeb *); extern int ftime(struct timeb *);
#endif #endif
void static void
_PyTime_gettimeofday(_PyTime_timeval *tp) pygettimeofday(_PyTime_timeval *tp, _Py_clock_info_t *info)
{ {
#ifdef MS_WINDOWS #ifdef MS_WINDOWS
FILETIME system_time; FILETIME system_time;
@ -35,6 +35,20 @@ _PyTime_gettimeofday(_PyTime_timeval *tp)
microseconds = large.QuadPart / 10 - 11644473600000000; microseconds = large.QuadPart / 10 - 11644473600000000;
tp->tv_sec = microseconds / 1000000; tp->tv_sec = microseconds / 1000000;
tp->tv_usec = microseconds % 1000000; tp->tv_usec = microseconds % 1000000;
if (info) {
DWORD timeAdjustment, timeIncrement;
BOOL isTimeAdjustmentDisabled;
info->implementation = "GetSystemTimeAsFileTime()";
info->is_monotonic = 0;
(void) GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
&isTimeAdjustmentDisabled);
info->resolution = timeIncrement * 1e-7;
if (isTimeAdjustmentDisabled)
info->is_adjusted = 0;
else
info->is_adjusted = 1;
}
#else #else
/* There are three ways to get the time: /* There are three ways to get the time:
(1) gettimeofday() -- resolution in microseconds (1) gettimeofday() -- resolution in microseconds
@ -46,14 +60,22 @@ _PyTime_gettimeofday(_PyTime_timeval *tp)
Note: clock resolution does not imply clock accuracy! */ Note: clock resolution does not imply clock accuracy! */
#ifdef HAVE_GETTIMEOFDAY #ifdef HAVE_GETTIMEOFDAY
int err;
#ifdef GETTIMEOFDAY_NO_TZ #ifdef GETTIMEOFDAY_NO_TZ
if (gettimeofday(tp) == 0) err = gettimeofday(tp);
#else
err = gettimeofday(tp, (struct timezone *)NULL);
#endif
if (err == 0) {
if (info) {
info->implementation = "gettimeofday()";
info->resolution = 1e-6;
info->is_monotonic = 0;
info->is_adjusted = 1;
}
return; return;
#else /* !GETTIMEOFDAY_NO_TZ */ }
if (gettimeofday(tp, (struct timezone *)NULL) == 0) #endif /* HAVE_GETTIMEOFDAY */
return;
#endif /* !GETTIMEOFDAY_NO_TZ */
#endif /* !HAVE_GETTIMEOFDAY */
#if defined(HAVE_FTIME) #if defined(HAVE_FTIME)
{ {
@ -61,15 +83,39 @@ _PyTime_gettimeofday(_PyTime_timeval *tp)
ftime(&t); ftime(&t);
tp->tv_sec = t.time; tp->tv_sec = t.time;
tp->tv_usec = t.millitm * 1000; tp->tv_usec = t.millitm * 1000;
if (info) {
info->implementation = "ftime()";
info->resolution = 1e-3;
info->is_monotonic = 0;
info->is_adjusted = 1;
}
} }
#else /* !HAVE_FTIME */ #else /* !HAVE_FTIME */
tp->tv_sec = time(NULL); tp->tv_sec = time(NULL);
tp->tv_usec = 0; tp->tv_usec = 0;
if (info) {
info->implementation = "time()";
info->resolution = 1.0;
info->is_monotonic = 0;
info->is_adjusted = 1;
}
#endif /* !HAVE_FTIME */ #endif /* !HAVE_FTIME */
#endif /* MS_WINDOWS */ #endif /* MS_WINDOWS */
} }
void
_PyTime_gettimeofday(_PyTime_timeval *tp)
{
pygettimeofday(tp, NULL);
}
void
_PyTime_gettimeofday_info(_PyTime_timeval *tp, _Py_clock_info_t *info)
{
pygettimeofday(tp, info);
}
static void static void
error_time_t_overflow(void) error_time_t_overflow(void)
{ {