Issue #1869 (and 4707, 5118, 5473, 1456775): use the new
string <-> float conversion routines to make round(x, n) correctly rounded for floats x, so that it always agrees with format(x, '.<n>f'). Also fix some other round nuisances, like round(123.456, 1-2**31) giving an integer rather than a float.
This commit is contained in:
parent
60fd0999cc
commit
e6a076d86c
|
@ -389,6 +389,88 @@ class ReprTestCase(unittest.TestCase):
|
|||
self.assertEqual(s, repr(float(s)))
|
||||
self.assertEqual(negs, repr(float(negs)))
|
||||
|
||||
class RoundTestCase(unittest.TestCase):
|
||||
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
|
||||
"test requires IEEE 754 doubles")
|
||||
def test_inf_nan(self):
|
||||
self.assertRaises(OverflowError, round, INF)
|
||||
self.assertRaises(OverflowError, round, -INF)
|
||||
self.assertRaises(ValueError, round, NAN)
|
||||
|
||||
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
|
||||
"test requires IEEE 754 doubles")
|
||||
def test_large_n(self):
|
||||
for n in [324, 325, 400, 2**31-1, 2**31, 2**32, 2**100]:
|
||||
self.assertEqual(round(123.456, n), 123.456)
|
||||
self.assertEqual(round(-123.456, n), -123.456)
|
||||
self.assertEqual(round(1e300, n), 1e300)
|
||||
self.assertEqual(round(1e-320, n), 1e-320)
|
||||
self.assertEqual(round(1e150, 300), 1e150)
|
||||
self.assertEqual(round(1e300, 307), 1e300)
|
||||
self.assertEqual(round(-3.1415, 308), -3.1415)
|
||||
self.assertEqual(round(1e150, 309), 1e150)
|
||||
self.assertEqual(round(1.4e-315, 315), 1e-315)
|
||||
|
||||
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
|
||||
"test requires IEEE 754 doubles")
|
||||
def test_small_n(self):
|
||||
for n in [-308, -309, -400, 1-2**31, -2**31, -2**31-1, -2**100]:
|
||||
self.assertEqual(round(123.456, n), 0.0)
|
||||
self.assertEqual(round(-123.456, n), -0.0)
|
||||
self.assertEqual(round(1e300, n), 0.0)
|
||||
self.assertEqual(round(1e-320, n), 0.0)
|
||||
|
||||
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
|
||||
"test requires IEEE 754 doubles")
|
||||
def test_overflow(self):
|
||||
self.assertRaises(OverflowError, round, 1.6e308, -308)
|
||||
self.assertRaises(OverflowError, round, -1.7e308, -308)
|
||||
|
||||
@unittest.skipUnless(getattr(sys, 'float_repr_style', '') == 'short',
|
||||
"applies only when using short float repr style")
|
||||
def test_previous_round_bugs(self):
|
||||
# particular cases that have occurred in bug reports
|
||||
self.assertEqual(round(562949953421312.5, 1),
|
||||
562949953421312.5)
|
||||
self.assertEqual(round(56294995342131.5, 3),
|
||||
56294995342131.5)
|
||||
# round-half-even
|
||||
self.assertEqual(round(25.0, -1), 20.0)
|
||||
self.assertEqual(round(35.0, -1), 40.0)
|
||||
self.assertEqual(round(45.0, -1), 40.0)
|
||||
self.assertEqual(round(55.0, -1), 60.0)
|
||||
self.assertEqual(round(65.0, -1), 60.0)
|
||||
self.assertEqual(round(75.0, -1), 80.0)
|
||||
self.assertEqual(round(85.0, -1), 80.0)
|
||||
self.assertEqual(round(95.0, -1), 100.0)
|
||||
|
||||
@unittest.skipUnless(getattr(sys, 'float_repr_style', '') == 'short',
|
||||
"applies only when using short float repr style")
|
||||
def test_matches_float_format(self):
|
||||
# round should give the same results as float formatting
|
||||
for i in range(500):
|
||||
x = i/1000.
|
||||
self.assertEqual(float(format(x, '.0f')), round(x, 0))
|
||||
self.assertEqual(float(format(x, '.1f')), round(x, 1))
|
||||
self.assertEqual(float(format(x, '.2f')), round(x, 2))
|
||||
self.assertEqual(float(format(x, '.3f')), round(x, 3))
|
||||
|
||||
for i in range(5, 5000, 10):
|
||||
x = i/1000.
|
||||
self.assertEqual(float(format(x, '.0f')), round(x, 0))
|
||||
self.assertEqual(float(format(x, '.1f')), round(x, 1))
|
||||
self.assertEqual(float(format(x, '.2f')), round(x, 2))
|
||||
self.assertEqual(float(format(x, '.3f')), round(x, 3))
|
||||
|
||||
for i in range(500):
|
||||
x = random.random()
|
||||
self.assertEqual(float(format(x, '.0f')), round(x, 0))
|
||||
self.assertEqual(float(format(x, '.1f')), round(x, 1))
|
||||
self.assertEqual(float(format(x, '.2f')), round(x, 2))
|
||||
self.assertEqual(float(format(x, '.3f')), round(x, 3))
|
||||
|
||||
|
||||
|
||||
# Beginning with Python 2.6 float has cross platform compatible
|
||||
# ways to create and represent inf and nan
|
||||
class InfNanTest(unittest.TestCase):
|
||||
|
@ -878,6 +960,7 @@ def test_main():
|
|||
IEEEFormatTestCase,
|
||||
FormatTestCase,
|
||||
ReprTestCase,
|
||||
RoundTestCase,
|
||||
InfNanTest,
|
||||
HexFloatTestCase,
|
||||
)
|
||||
|
|
|
@ -12,6 +12,11 @@ What's New in Python 3.1 beta 1?
|
|||
Core and Builtins
|
||||
-----------------
|
||||
|
||||
- Issue #1869 (and many duplicates): make round(x, n) correctly
|
||||
rounded for a float x, by using the decimal <-> binary conversions
|
||||
from Python/dtoa.c. As a consequence, (e.g.) round(x, 2) now
|
||||
consistently agrees with format(x, '.2f').
|
||||
|
||||
- Issue #5772: format(1e100, '<') produces '1e+100', not '1.0e+100'.
|
||||
|
||||
- Issue #5515: str.format() type 'n' combined with commas and leading
|
||||
|
|
|
@ -899,43 +899,161 @@ float_trunc(PyObject *v)
|
|||
return PyLong_FromDouble(wholepart);
|
||||
}
|
||||
|
||||
/* double_round: rounds a finite double to the closest multiple of
|
||||
10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
|
||||
ndigits <= 323). Returns a Python float, or sets a Python error and
|
||||
returns NULL on failure (OverflowError and memory errors are possible). */
|
||||
|
||||
#ifndef PY_NO_SHORT_FLOAT_REPR
|
||||
/* version of double_round that uses the correctly-rounded string<->double
|
||||
conversions from Python/dtoa.c */
|
||||
|
||||
static PyObject *
|
||||
double_round(double x, int ndigits) {
|
||||
|
||||
double rounded;
|
||||
Py_ssize_t buflen, mybuflen=100;
|
||||
char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
|
||||
int decpt, sign;
|
||||
PyObject *result = NULL;
|
||||
|
||||
/* round to a decimal string */
|
||||
buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
|
||||
if (buf == NULL) {
|
||||
PyErr_NoMemory();
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Get new buffer if shortbuf is too small. Space needed <= buf_end -
|
||||
buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
|
||||
buflen = buf_end - buf;
|
||||
if (buflen + 8 > mybuflen) {
|
||||
mybuflen = buflen+8;
|
||||
mybuf = (char *)PyMem_Malloc(mybuflen);
|
||||
if (mybuf == NULL) {
|
||||
PyErr_NoMemory();
|
||||
goto exit;
|
||||
}
|
||||
}
|
||||
/* copy buf to mybuf, adding exponent, sign and leading 0 */
|
||||
PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
|
||||
buf, decpt - (int)buflen);
|
||||
|
||||
/* and convert the resulting string back to a double */
|
||||
errno = 0;
|
||||
rounded = _Py_dg_strtod(mybuf, NULL);
|
||||
if (errno == ERANGE && fabs(rounded) >= 1.)
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"rounded value too large to represent");
|
||||
else
|
||||
result = PyFloat_FromDouble(rounded);
|
||||
|
||||
/* done computing value; now clean up */
|
||||
if (mybuf != shortbuf)
|
||||
PyMem_Free(mybuf);
|
||||
exit:
|
||||
_Py_dg_freedtoa(buf);
|
||||
return result;
|
||||
}
|
||||
|
||||
#else /* PY_NO_SHORT_FLOAT_REPR */
|
||||
|
||||
/* fallback version, to be used when correctly rounded binary<->decimal
|
||||
conversions aren't available */
|
||||
|
||||
static PyObject *
|
||||
double_round(double x, int ndigits) {
|
||||
double pow1, pow2, y, z;
|
||||
if (ndigits >= 0) {
|
||||
if (ndigits > 22) {
|
||||
/* pow1 and pow2 are each safe from overflow, but
|
||||
pow1*pow2 ~= pow(10.0, ndigits) might overflow */
|
||||
pow1 = pow(10.0, (double)(ndigits-22));
|
||||
pow2 = 1e22;
|
||||
}
|
||||
else {
|
||||
pow1 = pow(10.0, (double)ndigits);
|
||||
pow2 = 1.0;
|
||||
}
|
||||
y = (x*pow1)*pow2;
|
||||
/* if y overflows, then rounded value is exactly x */
|
||||
if (!Py_IS_FINITE(y))
|
||||
return PyFloat_FromDouble(x);
|
||||
}
|
||||
else {
|
||||
pow1 = pow(10.0, (double)-ndigits);
|
||||
pow2 = 1.0; /* unused; silences a gcc compiler warning */
|
||||
y = x / pow1;
|
||||
}
|
||||
|
||||
z = round(y);
|
||||
if (fabs(y-z) == 0.5)
|
||||
/* halfway between two integers; use round-half-even */
|
||||
z = 2.0*round(y/2.0);
|
||||
|
||||
if (ndigits >= 0)
|
||||
z = (z / pow2) / pow1;
|
||||
else
|
||||
z *= pow1;
|
||||
|
||||
/* if computation resulted in overflow, raise OverflowError */
|
||||
if (!Py_IS_FINITE(z)) {
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"overflow occurred during round");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return PyFloat_FromDouble(z);
|
||||
}
|
||||
|
||||
#endif /* PY_NO_SHORT_FLOAT_REPR */
|
||||
|
||||
/* round a Python float v to the closest multiple of 10**-ndigits */
|
||||
|
||||
static PyObject *
|
||||
float_round(PyObject *v, PyObject *args)
|
||||
{
|
||||
#define UNDEF_NDIGITS (-0x7fffffff) /* Unlikely ndigits value */
|
||||
double x;
|
||||
double f = 1.0;
|
||||
double flr, cil;
|
||||
double rounded;
|
||||
int ndigits = UNDEF_NDIGITS;
|
||||
|
||||
if (!PyArg_ParseTuple(args, "|i", &ndigits))
|
||||
return NULL;
|
||||
double x, rounded;
|
||||
PyObject *o_ndigits = NULL;
|
||||
Py_ssize_t ndigits;
|
||||
|
||||
x = PyFloat_AsDouble(v);
|
||||
|
||||
if (ndigits != UNDEF_NDIGITS) {
|
||||
f = pow(10.0, ndigits);
|
||||
x *= f;
|
||||
if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
|
||||
return NULL;
|
||||
if (o_ndigits == NULL) {
|
||||
/* single-argument round: round to nearest integer */
|
||||
rounded = round(x);
|
||||
if (fabs(x-rounded) == 0.5)
|
||||
/* halfway case: round to even */
|
||||
rounded = 2.0*round(x/2.0);
|
||||
return PyLong_FromDouble(rounded);
|
||||
}
|
||||
|
||||
flr = floor(x);
|
||||
cil = ceil(x);
|
||||
/* interpret second argument as a Py_ssize_t; clips on overflow */
|
||||
ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
|
||||
if (ndigits == -1 && PyErr_Occurred())
|
||||
return NULL;
|
||||
|
||||
if (x-flr > 0.5)
|
||||
rounded = cil;
|
||||
else if (x-flr == 0.5)
|
||||
rounded = fmod(flr, 2) == 0 ? flr : cil;
|
||||
/* nans and infinities round to themselves */
|
||||
if (!Py_IS_FINITE(x))
|
||||
return PyFloat_FromDouble(x);
|
||||
|
||||
/* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
|
||||
always rounds to itself. For ndigits < NDIGITS_MIN, x always
|
||||
rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
|
||||
#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
|
||||
#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
|
||||
if (ndigits > NDIGITS_MAX)
|
||||
/* return x */
|
||||
return PyFloat_FromDouble(x);
|
||||
else if (ndigits < NDIGITS_MIN)
|
||||
/* return 0.0, but with sign of x */
|
||||
return PyFloat_FromDouble(0.0*x);
|
||||
else
|
||||
rounded = flr;
|
||||
|
||||
if (ndigits != UNDEF_NDIGITS) {
|
||||
rounded /= f;
|
||||
return PyFloat_FromDouble(rounded);
|
||||
}
|
||||
|
||||
return PyLong_FromDouble(rounded);
|
||||
#undef UNDEF_NDIGITS
|
||||
/* finite x, and ndigits is not unreasonably large */
|
||||
return double_round(x, (int)ndigits);
|
||||
#undef NDIGITS_MAX
|
||||
#undef NDIGITS_MIN
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
|
|
Loading…
Reference in New Issue