Reverting the mistaken commit r87677. Checked in py3rsa.py by mistake.

This commit is contained in:
Senthil Kumaran 2011-01-03 10:11:07 +00:00
parent 6993d579ce
commit e33b7c61b1
1 changed files with 0 additions and 181 deletions

181
py3rsa.py
View File

@ -1,181 +0,0 @@
# Copyright (c) 2010 Russell Dias
# Licensed under the MIT licence.
# http://www.inversezen.com
#
# This is an implementation of the RSA public key
# encryption written in Python by Russell Dias
__author__ = 'Russell Dias // inversezen.com'
# Py3k port done by Senthil (senthil@uthcode.com)
__date__ = '05/12/2010'
__version__ = '0.0.1'
import random
from math import log
def gcd(u, v):
""" The Greatest Common Divisor, returns
the largest positive integer that divides
u with v without a remainder.
"""
while v:
u, v = u, u % v
return u
def eec(u, v):
""" The Extended Eculidean Algorithm
For u and v this algorithm finds (u1, u2, u3)
such that uu1 + vu2 = u3 = gcd(u, v)
We also use auxiliary vectors (v1, v2, v3) and
(tmp1, tmp2, tmp3)
"""
(u1, u2, u3) = (1, 0, u)
(v1, v2, v3) = (0, 1, v)
while (v3 != 0):
quotient = u3 // v3
tmp1 = u1 - quotient * v1
tmp2 = u2 - quotient * v2
tmp3 = u3 - quotient * v3
(u1, u2, u3) = (v1, v2, v3)
(v1, v2, v3) = (tmp1, tmp2, tmp3)
return u3, u1, u2
def stringEncode(string):
""" Brandon Sterne's algorithm to convert
string to long
"""
message = 0
messageCount = len(string) - 1
for letter in string:
message += (256**messageCount) * ord(letter)
messageCount -= 1
return message
def stringDecode(number):
""" Convert long back to string
"""
letters = []
text = ''
integer = int(log(number, 256))
while(integer >= 0):
letter = number // (256**integer)
letters.append(chr(letter))
number -= letter * (256**integer)
integer -= 1
for char in letters:
text += char
return text
def split_to_odd(n):
""" Return values 2 ^ k, such that 2^k*q = n;
or an odd integer to test for primiality
Let n be an odd prime. Then n-1 is even,
where k is a positive integer.
"""
k = 0
while (n > 0) and (n % 2 == 0):
k += 1
n >>= 1
return (k, n)
def prime(a, q, k, n):
if pow(a, q, n) == 1:
return True
elif (n - 1) in [pow(a, q*(2**j), n) for j in range(k)]:
return True
else:
return False
def miller_rabin(n, trials):
"""
There is still a small chance that n will return a
false positive. To reduce risk, it is recommended to use
more trials.
"""
# 2^k * q = n - 1; q is an odd int
(k, q) = split_to_odd(n - 1)
for trial in range(trials):
a = random.randint(2, n-1)
if not prime(a, q, k, n):
return False
return True
def get_prime(k):
""" Generate prime of size k bits, with 50 tests
to ensure accuracy.
"""
prime = 0
while (prime == 0):
prime = random.randrange(pow(2,k//2-1) + 1, pow(2, k//2), 2)
if not miller_rabin(prime, 50):
prime = 0
return prime
def modular_inverse(a, m):
""" To calculate the decryption exponent such that
(d * e) mod phi(N) = 1 OR g == 1 in our implementation.
Where m is Phi(n) (PHI = (p-1) * (q-1) )
s % m or d (decryption exponent) is the multiplicative inverse of
the encryption exponent e.
"""
g, s, t = eec(a, m)
if g == 1:
return s % m
else:
return None
def key_gen(bits):
""" The public encryption exponent e,
can be an artibrary prime number.
Obviously, the higher the number,
the more secure the key pairs are.
"""
e = 17
p = get_prime(bits)
q = get_prime(bits)
d = modular_inverse(e, (p-1)*(q-1))
return p*q,d,e
def write_to_file(e, d, n):
""" Write our public and private keys to file
"""
public = open("publicKey", "w")
public.write(str(e))
public.write("\n")
public.write(str(n))
public.close()
private = open("privateKey", "w")
private.write(str(d))
private.write("\n")
private.write(str(n))
private.close()
if __name__ == '__main__':
bits = input("Enter the size of your key pairs, in bits: ")
n, d, e = key_gen(int(bits))
#Write keys to file
write_to_file(e, d, n)
print("Your keys pairs have been saved to file")
m = input("Enter the message you would like to encrypt: ")
m = stringEncode(m)
encrypted = pow(m, e, n)
print("Your encrypted message is: %s" % encrypted)
decrypted = pow(encrypted, d, n)
message = stringDecode(decrypted)
print("You message decrypted is: %s" % message)