Reverting the mistaken commit r87677. Checked in py3rsa.py by mistake.
This commit is contained in:
parent
6993d579ce
commit
e33b7c61b1
181
py3rsa.py
181
py3rsa.py
|
@ -1,181 +0,0 @@
|
|||
# Copyright (c) 2010 Russell Dias
|
||||
# Licensed under the MIT licence.
|
||||
# http://www.inversezen.com
|
||||
#
|
||||
# This is an implementation of the RSA public key
|
||||
# encryption written in Python by Russell Dias
|
||||
|
||||
__author__ = 'Russell Dias // inversezen.com'
|
||||
# Py3k port done by Senthil (senthil@uthcode.com)
|
||||
__date__ = '05/12/2010'
|
||||
__version__ = '0.0.1'
|
||||
|
||||
import random
|
||||
from math import log
|
||||
|
||||
def gcd(u, v):
|
||||
""" The Greatest Common Divisor, returns
|
||||
the largest positive integer that divides
|
||||
u with v without a remainder.
|
||||
"""
|
||||
while v:
|
||||
u, v = u, u % v
|
||||
return u
|
||||
|
||||
def eec(u, v):
|
||||
""" The Extended Eculidean Algorithm
|
||||
For u and v this algorithm finds (u1, u2, u3)
|
||||
such that uu1 + vu2 = u3 = gcd(u, v)
|
||||
|
||||
We also use auxiliary vectors (v1, v2, v3) and
|
||||
(tmp1, tmp2, tmp3)
|
||||
"""
|
||||
(u1, u2, u3) = (1, 0, u)
|
||||
(v1, v2, v3) = (0, 1, v)
|
||||
while (v3 != 0):
|
||||
quotient = u3 // v3
|
||||
tmp1 = u1 - quotient * v1
|
||||
tmp2 = u2 - quotient * v2
|
||||
tmp3 = u3 - quotient * v3
|
||||
(u1, u2, u3) = (v1, v2, v3)
|
||||
(v1, v2, v3) = (tmp1, tmp2, tmp3)
|
||||
return u3, u1, u2
|
||||
|
||||
def stringEncode(string):
|
||||
""" Brandon Sterne's algorithm to convert
|
||||
string to long
|
||||
"""
|
||||
message = 0
|
||||
messageCount = len(string) - 1
|
||||
|
||||
for letter in string:
|
||||
message += (256**messageCount) * ord(letter)
|
||||
messageCount -= 1
|
||||
return message
|
||||
|
||||
def stringDecode(number):
|
||||
""" Convert long back to string
|
||||
"""
|
||||
|
||||
letters = []
|
||||
text = ''
|
||||
integer = int(log(number, 256))
|
||||
|
||||
while(integer >= 0):
|
||||
letter = number // (256**integer)
|
||||
letters.append(chr(letter))
|
||||
number -= letter * (256**integer)
|
||||
integer -= 1
|
||||
for char in letters:
|
||||
text += char
|
||||
|
||||
return text
|
||||
|
||||
def split_to_odd(n):
|
||||
""" Return values 2 ^ k, such that 2^k*q = n;
|
||||
or an odd integer to test for primiality
|
||||
Let n be an odd prime. Then n-1 is even,
|
||||
where k is a positive integer.
|
||||
"""
|
||||
k = 0
|
||||
while (n > 0) and (n % 2 == 0):
|
||||
k += 1
|
||||
n >>= 1
|
||||
return (k, n)
|
||||
|
||||
def prime(a, q, k, n):
|
||||
if pow(a, q, n) == 1:
|
||||
return True
|
||||
elif (n - 1) in [pow(a, q*(2**j), n) for j in range(k)]:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def miller_rabin(n, trials):
|
||||
"""
|
||||
There is still a small chance that n will return a
|
||||
false positive. To reduce risk, it is recommended to use
|
||||
more trials.
|
||||
"""
|
||||
# 2^k * q = n - 1; q is an odd int
|
||||
(k, q) = split_to_odd(n - 1)
|
||||
|
||||
for trial in range(trials):
|
||||
a = random.randint(2, n-1)
|
||||
if not prime(a, q, k, n):
|
||||
return False
|
||||
return True
|
||||
|
||||
def get_prime(k):
|
||||
""" Generate prime of size k bits, with 50 tests
|
||||
to ensure accuracy.
|
||||
"""
|
||||
prime = 0
|
||||
while (prime == 0):
|
||||
prime = random.randrange(pow(2,k//2-1) + 1, pow(2, k//2), 2)
|
||||
if not miller_rabin(prime, 50):
|
||||
prime = 0
|
||||
return prime
|
||||
|
||||
def modular_inverse(a, m):
|
||||
""" To calculate the decryption exponent such that
|
||||
(d * e) mod phi(N) = 1 OR g == 1 in our implementation.
|
||||
Where m is Phi(n) (PHI = (p-1) * (q-1) )
|
||||
|
||||
s % m or d (decryption exponent) is the multiplicative inverse of
|
||||
the encryption exponent e.
|
||||
"""
|
||||
g, s, t = eec(a, m)
|
||||
if g == 1:
|
||||
return s % m
|
||||
else:
|
||||
return None
|
||||
|
||||
def key_gen(bits):
|
||||
""" The public encryption exponent e,
|
||||
can be an artibrary prime number.
|
||||
|
||||
Obviously, the higher the number,
|
||||
the more secure the key pairs are.
|
||||
"""
|
||||
e = 17
|
||||
p = get_prime(bits)
|
||||
q = get_prime(bits)
|
||||
d = modular_inverse(e, (p-1)*(q-1))
|
||||
return p*q,d,e
|
||||
|
||||
def write_to_file(e, d, n):
|
||||
""" Write our public and private keys to file
|
||||
"""
|
||||
public = open("publicKey", "w")
|
||||
public.write(str(e))
|
||||
public.write("\n")
|
||||
public.write(str(n))
|
||||
public.close()
|
||||
|
||||
private = open("privateKey", "w")
|
||||
private.write(str(d))
|
||||
private.write("\n")
|
||||
private.write(str(n))
|
||||
private.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
bits = input("Enter the size of your key pairs, in bits: ")
|
||||
|
||||
n, d, e = key_gen(int(bits))
|
||||
|
||||
#Write keys to file
|
||||
write_to_file(e, d, n)
|
||||
|
||||
print("Your keys pairs have been saved to file")
|
||||
|
||||
m = input("Enter the message you would like to encrypt: ")
|
||||
|
||||
m = stringEncode(m)
|
||||
encrypted = pow(m, e, n)
|
||||
|
||||
print("Your encrypted message is: %s" % encrypted)
|
||||
decrypted = pow(encrypted, d, n)
|
||||
message = stringDecode(decrypted)
|
||||
print("You message decrypted is: %s" % message)
|
Loading…
Reference in New Issue