Issue #8411: new condition variable emulation under Windows for the new GIL,
by Kristján. Unfortunately the 3.x Windows buildbots are in a wreck, so we'll have to watch them when they become fit again.
This commit is contained in:
parent
817c9df7e5
commit
e1dd1747e8
|
@ -106,7 +106,6 @@ do { \
|
|||
#define COND_INIT(cond) \
|
||||
if (pthread_cond_init(&cond, NULL)) { \
|
||||
Py_FatalError("pthread_cond_init(" #cond ") failed"); };
|
||||
#define COND_RESET(cond)
|
||||
#define COND_SIGNAL(cond) \
|
||||
if (pthread_cond_signal(&cond)) { \
|
||||
Py_FatalError("pthread_cond_signal(" #cond ") failed"); };
|
||||
|
@ -141,64 +140,120 @@ do { \
|
|||
|
||||
#include <windows.h>
|
||||
|
||||
#define MUTEX_T HANDLE
|
||||
#define MUTEX_INIT(mut) \
|
||||
if (!(mut = CreateMutex(NULL, FALSE, NULL))) { \
|
||||
Py_FatalError("CreateMutex(" #mut ") failed"); };
|
||||
#define MUTEX_T CRITICAL_SECTION
|
||||
#define MUTEX_INIT(mut) do { \
|
||||
if (!(InitializeCriticalSectionAndSpinCount(&(mut), 4000))) \
|
||||
Py_FatalError("CreateMutex(" #mut ") failed"); \
|
||||
} while (0)
|
||||
#define MUTEX_FINI(mut) \
|
||||
DeleteCriticalSection(&(mut))
|
||||
#define MUTEX_LOCK(mut) \
|
||||
if (WaitForSingleObject(mut, INFINITE) != WAIT_OBJECT_0) { \
|
||||
Py_FatalError("WaitForSingleObject(" #mut ") failed"); };
|
||||
EnterCriticalSection(&(mut))
|
||||
#define MUTEX_UNLOCK(mut) \
|
||||
if (!ReleaseMutex(mut)) { \
|
||||
Py_FatalError("ReleaseMutex(" #mut ") failed"); };
|
||||
LeaveCriticalSection(&(mut))
|
||||
|
||||
/* We emulate condition variables with events. It is sufficient here.
|
||||
WaitForMultipleObjects() allows the event to be caught and the mutex
|
||||
to be taken atomically.
|
||||
As for SignalObjectAndWait(), its semantics are unfortunately a bit
|
||||
more foggy. Many sources on the Web define it as atomically releasing
|
||||
the first object while starting to wait on the second, but MSDN states
|
||||
it is *not* atomic...
|
||||
/* We emulate condition variables with a semaphore.
|
||||
We use a Semaphore rather than an auto-reset event, because although
|
||||
an auto-resent event might appear to solve the lost-wakeup bug (race
|
||||
condition between releasing the outer lock and waiting) because it
|
||||
maintains state even though a wait hasn't happened, there is still
|
||||
a lost wakeup problem if more than one thread are interrupted in the
|
||||
critical place. A semaphore solves that.
|
||||
Because it is ok to signal a condition variable with no one
|
||||
waiting, we need to keep track of the number of
|
||||
waiting threads. Otherwise, the semaphore's state could rise
|
||||
without bound.
|
||||
|
||||
In any case, the emulation here is tailored for our particular use case.
|
||||
For example, we don't care how many threads are woken up when a condition
|
||||
gets signalled. Generic emulations of the pthread_cond_* API using
|
||||
Generic emulations of the pthread_cond_* API using
|
||||
Win32 functions can be found on the Web.
|
||||
The following read can be edificating (or not):
|
||||
http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
|
||||
*/
|
||||
#define COND_T HANDLE
|
||||
typedef struct COND_T
|
||||
{
|
||||
HANDLE sem; /* the semaphore */
|
||||
int n_waiting; /* how many are unreleased */
|
||||
} COND_T;
|
||||
|
||||
__inline static void _cond_init(COND_T *cond)
|
||||
{
|
||||
/* A semaphore with a large max value, The positive value
|
||||
* is only needed to catch those "lost wakeup" events and
|
||||
* race conditions when a timed wait elapses.
|
||||
*/
|
||||
if (!(cond->sem = CreateSemaphore(NULL, 0, 1000, NULL)))
|
||||
Py_FatalError("CreateSemaphore() failed");
|
||||
cond->n_waiting = 0;
|
||||
}
|
||||
|
||||
__inline static void _cond_fini(COND_T *cond)
|
||||
{
|
||||
BOOL ok = CloseHandle(cond->sem);
|
||||
if (!ok)
|
||||
Py_FatalError("CloseHandle() failed");
|
||||
}
|
||||
|
||||
__inline static void _cond_wait(COND_T *cond, MUTEX_T *mut)
|
||||
{
|
||||
++cond->n_waiting;
|
||||
MUTEX_UNLOCK(*mut);
|
||||
/* "lost wakeup bug" would occur if the caller were interrupted here,
|
||||
* but we are safe because we are using a semaphore wich has an internal
|
||||
* count.
|
||||
*/
|
||||
if (WaitForSingleObject(cond->sem, INFINITE) == WAIT_FAILED)
|
||||
Py_FatalError("WaitForSingleObject() failed");
|
||||
MUTEX_LOCK(*mut);
|
||||
}
|
||||
|
||||
__inline static int _cond_timed_wait(COND_T *cond, MUTEX_T *mut,
|
||||
int us)
|
||||
{
|
||||
DWORD r;
|
||||
++cond->n_waiting;
|
||||
MUTEX_UNLOCK(*mut);
|
||||
r = WaitForSingleObject(cond->sem, us / 1000);
|
||||
if (r == WAIT_FAILED)
|
||||
Py_FatalError("WaitForSingleObject() failed");
|
||||
MUTEX_LOCK(*mut);
|
||||
if (r == WAIT_TIMEOUT)
|
||||
--cond->n_waiting;
|
||||
/* Here we have a benign race condition with _cond_signal. If the
|
||||
* wait operation has timed out, but before we can acquire the
|
||||
* mutex again to decrement n_waiting, a thread holding the mutex
|
||||
* still sees a positive n_waiting value and may call
|
||||
* ReleaseSemaphore and decrement n_waiting.
|
||||
* This will cause n_waiting to be decremented twice.
|
||||
* This is benign, though, because ReleaseSemaphore will also have
|
||||
* been called, leaving the semaphore state positive. We may
|
||||
* thus end up with semaphore in state 1, and n_waiting == -1, and
|
||||
* the next time someone calls _cond_wait(), that thread will
|
||||
* pass right through, decrementing the semaphore state and
|
||||
* incrementing n_waiting, thus correcting the extra _cond_signal.
|
||||
*/
|
||||
return r == WAIT_TIMEOUT;
|
||||
}
|
||||
|
||||
__inline static void _cond_signal(COND_T *cond) {
|
||||
/* NOTE: This must be called with the mutex held */
|
||||
if (cond->n_waiting > 0) {
|
||||
if (!ReleaseSemaphore(cond->sem, 1, NULL))
|
||||
Py_FatalError("ReleaseSemaphore() failed");
|
||||
--cond->n_waiting;
|
||||
}
|
||||
}
|
||||
|
||||
#define COND_INIT(cond) \
|
||||
/* auto-reset, non-signalled */ \
|
||||
if (!(cond = CreateEvent(NULL, FALSE, FALSE, NULL))) { \
|
||||
Py_FatalError("CreateMutex(" #cond ") failed"); };
|
||||
#define COND_RESET(cond) \
|
||||
if (!ResetEvent(cond)) { \
|
||||
Py_FatalError("ResetEvent(" #cond ") failed"); };
|
||||
_cond_init(&(cond))
|
||||
#define COND_FINI(cond) \
|
||||
_cond_fini(&(cond))
|
||||
#define COND_SIGNAL(cond) \
|
||||
if (!SetEvent(cond)) { \
|
||||
Py_FatalError("SetEvent(" #cond ") failed"); };
|
||||
_cond_signal(&(cond))
|
||||
#define COND_WAIT(cond, mut) \
|
||||
{ \
|
||||
if (SignalObjectAndWait(mut, cond, INFINITE, FALSE) != WAIT_OBJECT_0) \
|
||||
Py_FatalError("SignalObjectAndWait(" #mut ", " #cond") failed"); \
|
||||
MUTEX_LOCK(mut); \
|
||||
}
|
||||
#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
|
||||
{ \
|
||||
DWORD r; \
|
||||
HANDLE objects[2] = { cond, mut }; \
|
||||
MUTEX_UNLOCK(mut); \
|
||||
r = WaitForMultipleObjects(2, objects, TRUE, microseconds / 1000); \
|
||||
if (r == WAIT_TIMEOUT) { \
|
||||
MUTEX_LOCK(mut); \
|
||||
timeout_result = 1; \
|
||||
} \
|
||||
else if (r != WAIT_OBJECT_0) \
|
||||
Py_FatalError("WaitForSingleObject(" #cond ") failed"); \
|
||||
else \
|
||||
timeout_result = 0; \
|
||||
}
|
||||
_cond_wait(&(cond), &(mut))
|
||||
#define COND_TIMED_WAIT(cond, mut, us, timeout_result) do { \
|
||||
(timeout_result) = _cond_timed_wait(&(cond), &(mut), us); \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
|
||||
|
@ -282,7 +337,6 @@ static void drop_gil(PyThreadState *tstate)
|
|||
the GIL and drop it again, and reset the condition
|
||||
before we even had a chance to wait for it. */
|
||||
COND_WAIT(switch_cond, switch_mutex);
|
||||
COND_RESET(switch_cond);
|
||||
}
|
||||
MUTEX_UNLOCK(switch_mutex);
|
||||
}
|
||||
|
@ -301,7 +355,6 @@ static void take_gil(PyThreadState *tstate)
|
|||
if (!_Py_atomic_load_relaxed(&gil_locked))
|
||||
goto _ready;
|
||||
|
||||
COND_RESET(gil_cond);
|
||||
while (_Py_atomic_load_relaxed(&gil_locked)) {
|
||||
int timed_out = 0;
|
||||
unsigned long saved_switchnum;
|
||||
|
|
Loading…
Reference in New Issue