Issue #3197: rework documentation for fractions module.

This commit is contained in:
Mark Dickinson 2008-06-27 16:49:27 +00:00
parent f1458485b3
commit df90ee6c5f
1 changed files with 58 additions and 32 deletions

View File

@ -9,38 +9,74 @@
.. versionadded:: 2.6
The :mod:`fractions` module defines an immutable, infinite-precision
Fraction number class.
The :mod:`fractions` module provides support for rational number arithmetic.
A Fraction instance can be constructed from a pair of integers, from
another rational number, or from a string.
.. class:: Fraction(numerator=0, denominator=1)
Fraction(other_fraction)
Fraction(string)
The first version requires that *numerator* and *denominator* are
instances of :class:`numbers.Integral` and returns a new
``Fraction`` representing ``numerator/denominator``. If
*denominator* is :const:`0`, raises a :exc:`ZeroDivisionError`. The
second version requires that *other_fraction* is an instance of
:class:`numbers.Rational` and returns an instance of
:class:`Fraction` with the same value. The third version expects a
string of the form ``[-+]?[0-9]+(/[0-9]+)?``, optionally surrounded
by spaces.
:class:`Fraction` instance with value ``numerator/denominator``. If
*denominator* is :const:`0`, it raises a
:exc:`ZeroDivisionError`. The second version requires that
*other_fraction* is an instance of :class:`numbers.Rational` and
returns an :class:`Fraction` instance with the same value. The
last version of the constructor expects a string or unicode
instance in one of two possible forms. The first form is::
Implements all of the methods and operations from
:class:`numbers.Rational` and is immutable and hashable.
[sign] numerator ['/' denominator]
where the optional ``sign`` may be either '+' or '-' and
``numerator`` and ``denominator`` (if present) are strings of
decimal digits. The second permitted form is that of a number
containing a decimal point::
[sign] integer '.' [fraction] | [sign] '.' fraction
where ``integer`` and ``fraction`` are strings of digits. In
either form the input string may also have leading and/or trailing
whitespace. Here are some examples::
>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction('3/7')
Fraction(3, 7)
[40794 refs]
>>> Fraction(' -3/7 ')
Fraction(-3, 7)
>>> Fraction('1.414213 \t\n')
Fraction(1414213, 1000000)
>>> Fraction('-.125')
Fraction(-1, 8)
The :class:`Fraction` class inherits from the abstract base class
:class:`numbers.Rational`, and implements all of the methods and
operations from that class. :class:`Fraction` instances are hashable,
and should be treated as immutable. In addition,
:class:`Fraction` has the following methods:
.. method:: from_float(flt)
This classmethod constructs a :class:`Fraction` representing the exact
This class method constructs a :class:`Fraction` representing the exact
value of *flt*, which must be a :class:`float`. Beware that
``Fraction.from_float(0.3)`` is not the same value as ``Fraction(3, 10)``
.. method:: from_decimal(dec)
This classmethod constructs a :class:`Fraction` representing the exact
This class method constructs a :class:`Fraction` representing the exact
value of *dec*, which must be a :class:`decimal.Decimal`.
@ -52,34 +88,24 @@ Fraction number class.
>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355L, 113L)
Fraction(355, 113)
or for recovering a rational number that's represented as a float:
>>> from math import pi, cos
>>> Fraction.from_float(cos(pi/3))
Fraction(4503599627370497L, 9007199254740992L)
Fraction(4503599627370497, 9007199254740992)
>>> Fraction.from_float(cos(pi/3)).limit_denominator()
Fraction(1L, 2L)
Fraction(1, 2)
.. method:: __floor__()
.. function:: gcd(a, b)
Returns the greatest :class:`int` ``<= self``.
.. method:: __ceil__()
Returns the least :class:`int` ``>= self``.
.. method:: __round__()
__round__(ndigits)
The first version returns the nearest :class:`int` to ``self``, rounding
half to even. The second version rounds ``self`` to the nearest multiple
of ``Fraction(1, 10**ndigits)`` (logically, if ``ndigits`` is negative),
again rounding half toward even.
Return the greatest common divisor of the integers `a` and `b`. If
either `a` or `b` is nonzero, then the absolute value of `gcd(a,
b)` is the largest integer that divides both `a` and `b`. `gcd(a,b)`
has the same sign as `b` if `b` is nonzero; otherwise it takes the sign
of `a`. `gcd(0, 0)` returns `0`.
.. seealso::