New test %sort. This takes a sorted list, picks 1% of the list positions
at random, and replaces the elements at those positions with new random values. I was pleasantly surprised by how fast this goes! It's hard to conceive of an algorithm that could special-case for this effectively. Plus it's exactly what happens if a burst of gamma rays corrupts your sorted database on disk <wink>. i 2**i *sort ... %sort 15 32768 0.18 ... 0.03 16 65536 0.24 ... 0.04 17 131072 0.53 ... 0.08 18 262144 1.17 ... 0.16 19 524288 2.56 ... 0.35 20 1048576 5.54 ... 0.77
This commit is contained in:
parent
fe51c6d66e
commit
d5f4359458
|
@ -76,12 +76,13 @@ def tabulate(r):
|
|||
/sort: ascending data
|
||||
3sort: ascending, then 3 random exchanges
|
||||
+sort: ascending, then 10 random at the end
|
||||
%sort: ascending, then randomly replace 1% of the elements w/ random values
|
||||
~sort: many duplicates
|
||||
=sort: all equal
|
||||
!sort: worst case scenario
|
||||
|
||||
"""
|
||||
cases = tuple([ch + "sort" for ch in r"*\/3+~=!"])
|
||||
cases = tuple([ch + "sort" for ch in r"*\/3+%~=!"])
|
||||
fmt = ("%2s %7s" + " %6s"*len(cases))
|
||||
print fmt % (("i", "2**i") + cases)
|
||||
for i in r:
|
||||
|
@ -106,6 +107,11 @@ def tabulate(r):
|
|||
L[-10:] = [random.random() for dummy in range(10)]
|
||||
doit(L) # +sort
|
||||
|
||||
# Replace 1% of the elements at random.
|
||||
for dummy in xrange(n // 100):
|
||||
L[random.randrange(n)] = random.random()
|
||||
doit(L) # %sort
|
||||
|
||||
# Arrange for lots of duplicates.
|
||||
if n > 4:
|
||||
del L[4:]
|
||||
|
|
Loading…
Reference in New Issue