Yet more explicit special case handling to make

math.pow behave on alpha Tru64.  All IEEE 754
special values are now handled directly; only
the finite**finite case is handled by libm.
This commit is contained in:
Mark Dickinson 2008-04-20 04:13:13 +00:00
parent b2f7090239
commit cec3f138d8
2 changed files with 67 additions and 47 deletions

View File

@ -498,6 +498,18 @@ class MathTests(unittest.TestCase):
self.assertEqual(math.pow(-1.1, INF), INF)
self.assertEqual(math.pow(-1.9, INF), INF)
# pow(x, y) should work for x negative, y an integer
self.ftest('(-2.)**3.', math.pow(-2.0, 3.0), -8.0)
self.ftest('(-2.)**2.', math.pow(-2.0, 2.0), 4.0)
self.ftest('(-2.)**1.', math.pow(-2.0, 1.0), -2.0)
self.ftest('(-2.)**0.', math.pow(-2.0, 0.0), 1.0)
self.ftest('(-2.)**-0.', math.pow(-2.0, -0.0), 1.0)
self.ftest('(-2.)**-1.', math.pow(-2.0, -1.0), -0.5)
self.ftest('(-2.)**-2.', math.pow(-2.0, -2.0), 0.25)
self.ftest('(-2.)**-3.', math.pow(-2.0, -3.0), -0.125)
self.assertRaises(ValueError, math.pow, -2.0, -0.5)
self.assertRaises(ValueError, math.pow, -2.0, 0.5)
# the following tests have been commented out since they don't
# really belong here: the implementation of ** for floats is
# independent of the implemention of math.pow

View File

@ -522,7 +522,7 @@ math_pow(PyObject *self, PyObject *args)
{
PyObject *ox, *oy;
double r, x, y;
int y_is_odd;
int odd_y;
if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
return NULL;
@ -531,53 +531,61 @@ math_pow(PyObject *self, PyObject *args)
if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
return NULL;
/* deal directly with various special cases, to cope with problems on
various platforms whose semantics don't exactly match C99 */
/* 1**x, x**0, and (-1)**(+-infinity) return 1., even if x is NaN or
an infinity. */
if (x == 1. || y == 0. || (x == -1. && Py_IS_INFINITY(y)))
return PyFloat_FromDouble(1.);
/* otherwise, return a NaN if either input was a NaN */
/* deal directly with IEEE specials, to cope with problems on various
platforms whose semantics don't exactly match C99 */
if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
errno = 0;
if (Py_IS_NAN(x))
return PyFloat_FromDouble(x);
if (Py_IS_NAN(y))
return PyFloat_FromDouble(y);
/* inf ** (nonzero, non-NaN) is one of +-0, +-infinity */
if (Py_IS_INFINITY(x) && !Py_IS_NAN(y)) {
y_is_odd = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
r = y == 0. ? 1. : x; /* NaN**0 = 1 */
else if (Py_IS_NAN(y))
r = x == 1. ? 1. : y; /* 1**NaN = 1 */
else if (Py_IS_INFINITY(x)) {
odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
if (y > 0.)
r = y_is_odd ? x : fabs(x);
else
r = y_is_odd ? copysign(0., x) : 0.;
return PyFloat_FromDouble(r);
r = odd_y ? x : fabs(x);
else if (y == 0.)
r = 1.;
else /* y < 0. */
r = odd_y ? copysign(0., x) : 0.;
}
else if (Py_IS_INFINITY(y)) {
if (fabs(x) == 1.0)
r = 1.;
else if (y > 0. && fabs(x) > 1.0)
r = y;
else if (y < 0. && fabs(x) < 1.0) {
r = -y; /* result is +inf */
if (x == 0.) /* 0**-inf: divide-by-zero */
errno = EDOM;
}
else
r = 0.;
}
}
else {
/* let libm handle finite**finite */
errno = 0;
PyFPE_START_PROTECT("in math_pow", return 0);
r = pow(x, y);
PyFPE_END_PROTECT(r);
/* a NaN result should arise only from (-ve)**(finite
non-integer); in this case we want to raise ValueError. */
if (!Py_IS_FINITE(r)) {
if (Py_IS_NAN(r)) {
errno = EDOM;
}
/* an infinite result arises either from:
(A) (+/-0.)**negative,
(B) overflow of x**y with both x and y finite (and x nonzero)
(C) (+/-inf)**positive, or
(D) x**inf with |x| > 1, or x**-inf with |x| < 1.
In case (A) we want ValueError to be raised. In case (B)
OverflowError should be raised. In cases (C) and (D) the infinite
result should be returned.
/*
an infinite result here arises either from:
(A) (+/-0.)**negative (-> divide-by-zero)
(B) overflow of x**y with x and y finite
*/
else if (Py_IS_INFINITY(r)) {
if (x == 0.)
errno = EDOM;
else if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
errno = ERANGE;
else
errno = 0;
errno = ERANGE;
}
}
}
if (errno && is_error(r))