Issue #22117: Add a new Python timestamp format _PyTime_t to pytime.h

In practice, _PyTime_t is a number of nanoseconds. Its C type is a 64-bit
signed number. It's integer value is in the range [-2^63; 2^63-1]. In seconds,
the range is around [-292 years; +292 years]. In term of Epoch timestamp
(1970-01-01), it can store a date between 1677-09-21 and 2262-04-11.

The API has a resolution of 1 nanosecond and use integer number. With a
resolution on 1 nanosecond, 64-bit IEEE 754 floating point numbers loose
precision after 194 days. It's not the case with this API. The drawback is
overflow for values outside [-2^63; 2^63-1], but these values are unlikely for
most Python modules, except of the datetime module.

New functions:

- _PyTime_GetMonotonicClock()
- _PyTime_FromObject()
- _PyTime_AsMilliseconds()
- _PyTime_AsTimeval()

This change uses these new functions in time.sleep() to avoid rounding issues.

The new API will be extended step by step, and the old API will be removed step
by step. Currently, some code is duplicated just to be able to move
incrementally, instead of pushing a large change at once.
This commit is contained in:
Victor Stinner 2015-03-27 13:31:18 +01:00
parent a766ddfa2f
commit cb29f0177c
3 changed files with 362 additions and 23 deletions

View File

@ -111,6 +111,40 @@ _PyTime_AddDouble(_PyTime_timeval *tv, double interval,
Return 0 on success, raise an exception and return -1 on error. */ Return 0 on success, raise an exception and return -1 on error. */
PyAPI_FUNC(int) _PyTime_Init(void); PyAPI_FUNC(int) _PyTime_Init(void);
/****************** NEW _PyTime_t API **********************/
#ifdef PY_INT64_T
typedef PY_INT64_T _PyTime_t;
#else
# error "_PyTime_t need signed 64-bit integer type"
#endif
/* Convert a Python float or int to a timetamp.
Raise an exception and return -1 on error, return 0 on success. */
PyAPI_FUNC(int) _PyTime_FromObject(_PyTime_t *t,
PyObject *obj,
_PyTime_round_t round);
/* Convert timestamp to a number of milliseconds (10^-3 seconds). */
PyAPI_FUNC(_PyTime_t)
_PyTime_AsMilliseconds(_PyTime_t t,
_PyTime_round_t round);
/* Convert a timestamp to a timeval structure. */
PyAPI_FUNC(int) _PyTime_AsTimeval(_PyTime_t t,
struct timeval *tv,
_PyTime_round_t round);
/* Get the time of a monotonic clock, i.e. a clock that cannot go backwards.
The clock is not affected by system clock updates. The reference point of
the returned value is undefined, so that only the difference between the
results of consecutive calls is valid.
The function cannot fail. _PyTime_Init() ensures that a monotonic clock
is available and works. */
PyAPI_FUNC(_PyTime_t) _PyTime_GetMonotonicClock(void);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -31,7 +31,7 @@
#endif /* !__WATCOMC__ || __QNX__ */ #endif /* !__WATCOMC__ || __QNX__ */
/* Forward declarations */ /* Forward declarations */
static int floatsleep(double); static int pysleep(_PyTime_t);
static PyObject* floattime(_Py_clock_info_t *info); static PyObject* floattime(_Py_clock_info_t *info);
static PyObject * static PyObject *
@ -218,17 +218,17 @@ Return the resolution (precision) of the specified clock clk_id.");
#endif /* HAVE_CLOCK_GETTIME */ #endif /* HAVE_CLOCK_GETTIME */
static PyObject * static PyObject *
time_sleep(PyObject *self, PyObject *args) time_sleep(PyObject *self, PyObject *obj)
{ {
double secs; _PyTime_t secs;
if (!PyArg_ParseTuple(args, "d:sleep", &secs)) if (_PyTime_FromObject(&secs, obj, _PyTime_ROUND_UP))
return NULL; return NULL;
if (secs < 0) { if (secs < 0) {
PyErr_SetString(PyExc_ValueError, PyErr_SetString(PyExc_ValueError,
"sleep length must be non-negative"); "sleep length must be non-negative");
return NULL; return NULL;
} }
if (floatsleep(secs) != 0) if (pysleep(secs) != 0)
return NULL; return NULL;
Py_INCREF(Py_None); Py_INCREF(Py_None);
return Py_None; return Py_None;
@ -1258,7 +1258,7 @@ static PyMethodDef time_methods[] = {
{"clock_settime", time_clock_settime, METH_VARARGS, clock_settime_doc}, {"clock_settime", time_clock_settime, METH_VARARGS, clock_settime_doc},
{"clock_getres", time_clock_getres, METH_VARARGS, clock_getres_doc}, {"clock_getres", time_clock_getres, METH_VARARGS, clock_getres_doc},
#endif #endif
{"sleep", time_sleep, METH_VARARGS, sleep_doc}, {"sleep", time_sleep, METH_O, sleep_doc},
{"gmtime", time_gmtime, METH_VARARGS, gmtime_doc}, {"gmtime", time_gmtime, METH_VARARGS, gmtime_doc},
{"localtime", time_localtime, METH_VARARGS, localtime_doc}, {"localtime", time_localtime, METH_VARARGS, localtime_doc},
{"asctime", time_asctime, METH_VARARGS, asctime_doc}, {"asctime", time_asctime, METH_VARARGS, asctime_doc},
@ -1379,34 +1379,30 @@ floattime(_Py_clock_info_t *info)
} }
/* Implement floatsleep() for various platforms. /* Implement pysleep() for various platforms.
When interrupted (or when another error occurs), return -1 and When interrupted (or when another error occurs), return -1 and
set an exception; else return 0. */ set an exception; else return 0. */
static int static int
floatsleep(double secs) pysleep(_PyTime_t secs)
{ {
_PyTime_timeval deadline, monotonic; _PyTime_t deadline, monotonic;
#ifndef MS_WINDOWS #ifndef MS_WINDOWS
struct timeval timeout; struct timeval timeout;
double frac;
int err = 0; int err = 0;
#else #else
double millisecs; _PyTime_t millisecs;
unsigned long ul_millis; unsigned long ul_millis;
DWORD rc; DWORD rc;
HANDLE hInterruptEvent; HANDLE hInterruptEvent;
#endif #endif
_PyTime_monotonic(&deadline); deadline = _PyTime_GetMonotonicClock() + secs;
_PyTime_AddDouble(&deadline, secs, _PyTime_ROUND_UP);
do { do {
#ifndef MS_WINDOWS #ifndef MS_WINDOWS
frac = fmod(secs, 1.0); if (_PyTime_AsTimeval(secs, &timeout, _PyTime_ROUND_UP) < 0)
secs = floor(secs); return -1;
timeout.tv_sec = (long)secs;
timeout.tv_usec = (long)(frac*1e6);
Py_BEGIN_ALLOW_THREADS Py_BEGIN_ALLOW_THREADS
err = select(0, (fd_set *)0, (fd_set *)0, (fd_set *)0, &timeout); err = select(0, (fd_set *)0, (fd_set *)0, (fd_set *)0, &timeout);
@ -1420,7 +1416,7 @@ floatsleep(double secs)
return -1; return -1;
} }
#else #else
millisecs = secs * 1000.0; millisecs = _PyTime_AsMilliseconds(secs, _PyTime_ROUND_UP);
if (millisecs > (double)ULONG_MAX) { if (millisecs > (double)ULONG_MAX) {
PyErr_SetString(PyExc_OverflowError, PyErr_SetString(PyExc_OverflowError,
"sleep length is too large"); "sleep length is too large");
@ -1453,9 +1449,9 @@ floatsleep(double secs)
if (PyErr_CheckSignals()) if (PyErr_CheckSignals())
return -1; return -1;
_PyTime_monotonic(&monotonic); monotonic = _PyTime_GetMonotonicClock();
secs = _PyTime_INTERVAL(monotonic, deadline); secs = deadline - monotonic;
if (secs <= 0.0) if (secs <= 00)
break; break;
/* retry with the recomputed delay */ /* retry with the recomputed delay */
} while (1); } while (1);

View File

@ -7,12 +7,22 @@
#include <mach/mach_time.h> /* mach_absolute_time(), mach_timebase_info() */ #include <mach/mach_time.h> /* mach_absolute_time(), mach_timebase_info() */
#endif #endif
/* To millisecond (10^-3) */
#define SEC_TO_MS 1000 #define SEC_TO_MS 1000
#define MS_TO_US 1000
#define US_TO_NS 1000
/* To microseconds (10^-6) */
#define MS_TO_US 1000
#define SEC_TO_US (SEC_TO_MS * MS_TO_US) #define SEC_TO_US (SEC_TO_MS * MS_TO_US)
/* To nanoseconds (10^-9) */
#define US_TO_NS 1000
#define MS_TO_NS (MS_TO_US * US_TO_NS)
#define SEC_TO_NS (SEC_TO_MS * MS_TO_NS)
#ifdef MS_WINDOWS
static OSVERSIONINFOEX winver;
#endif
static int static int
pygettimeofday(_PyTime_timeval *tp, _Py_clock_info_t *info, int raise) pygettimeofday(_PyTime_timeval *tp, _Py_clock_info_t *info, int raise)
{ {
@ -390,10 +400,305 @@ _PyTime_AddDouble(_PyTime_timeval *tv, double interval, _PyTime_round_t round)
tv->tv_usec %= SEC_TO_US; tv->tv_usec %= SEC_TO_US;
} }
/****************** NEW _PyTime_t API **********************/
static void
_PyTime_overflow(void)
{
PyErr_SetString(PyExc_OverflowError,
"timestamp too large to convert to C _PyTime_t");
}
#if !defined(MS_WINDOWS) && !defined(__APPLE__)
static int
_PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts)
{
_PyTime_t t;
t = (_PyTime_t)ts->tv_sec * SEC_TO_NS;
if (t / SEC_TO_NS != ts->tv_sec) {
_PyTime_overflow();
return -1;
}
t += ts->tv_nsec;
*tp = t;
return 0;
}
#endif
int
_PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
{
if (PyFloat_Check(obj)) {
double d, err;
/* convert to a number of nanoseconds */
d = PyFloat_AsDouble(obj);
d *= 1e9;
/* FIXME: use sign */
if (round == _PyTime_ROUND_UP)
d = ceil(d);
else
d = floor(d);
*t = (_PyTime_t)d;
err = d - (double)*t;
if (fabs(err) >= 1.0) {
_PyTime_overflow();
return -1;
}
return 0;
}
else {
#ifdef HAVE_LONG_LONG
PY_LONG_LONG sec;
sec = PyLong_AsLongLong(obj);
assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t));
#else
long sec;
sec = PyLong_AsLong(obj);
assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t));
#endif
if (sec == -1 && PyErr_Occurred()) {
if (PyErr_ExceptionMatches(PyExc_OverflowError))
_PyTime_overflow();
return -1;
}
*t = sec * SEC_TO_NS;
if (*t / SEC_TO_NS != sec) {
_PyTime_overflow();
return -1;
}
return 0;
}
}
static _PyTime_t
_PyTime_Multiply(_PyTime_t t, unsigned int multiply, _PyTime_round_t round)
{
_PyTime_t k;
if (multiply < SEC_TO_NS) {
k = SEC_TO_NS / multiply;
if (round == _PyTime_ROUND_UP)
return (t + k - 1) / k;
else
return t / k;
}
else {
k = multiply / SEC_TO_NS;
return t * k;
}
}
_PyTime_t
_PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round)
{
return _PyTime_Multiply(t, 1000, round);
}
int
_PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
{
_PyTime_t secs, ns;
secs = t / SEC_TO_NS;
ns = t % SEC_TO_NS;
#ifdef MS_WINDOWS
/* On Windows, timeval.tv_sec is a long (32 bit),
whereas time_t can be 64-bit. */
assert(sizeof(tv->tv_sec) == sizeof(long));
#if SIZEOF_TIME_T > SIZEOF_LONG
if (secs > LONG_MAX) {
_PyTime_overflow();
return -1;
}
#endif
tv->tv_sec = (long)secs;
#else
/* On OpenBSD 5.4, timeval.tv_sec is a long.
Example: long is 64-bit, whereas time_t is 32-bit. */
tv->tv_sec = secs;
if ((_PyTime_t)tv->tv_sec != secs) {
_PyTime_overflow();
return -1;
}
#endif
if (round == _PyTime_ROUND_UP)
tv->tv_usec = (int)((ns + US_TO_NS - 1) / US_TO_NS);
else
tv->tv_usec = (int)(ns / US_TO_NS);
return 0;
}
static int
pymonotonic_new(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
{
#ifdef Py_DEBUG
static int last_set = 0;
static _PyTime_t last = 0;
#endif
#if defined(MS_WINDOWS)
static ULONGLONG (*GetTickCount64) (void) = NULL;
static ULONGLONG (CALLBACK *Py_GetTickCount64)(void);
static int has_gettickcount64 = -1;
ULONGLONG result;
assert(info == NULL || raise);
if (has_gettickcount64 == -1) {
/* GetTickCount64() was added to Windows Vista */
has_gettickcount64 = (winver.dwMajorVersion >= 6);
if (has_gettickcount64) {
HINSTANCE hKernel32;
hKernel32 = GetModuleHandleW(L"KERNEL32");
*(FARPROC*)&Py_GetTickCount64 = GetProcAddress(hKernel32,
"GetTickCount64");
assert(Py_GetTickCount64 != NULL);
}
}
if (has_gettickcount64) {
result = Py_GetTickCount64();
}
else {
static DWORD last_ticks = 0;
static DWORD n_overflow = 0;
DWORD ticks;
ticks = GetTickCount();
if (ticks < last_ticks)
n_overflow++;
last_ticks = ticks;
result = (ULONGLONG)n_overflow << 32;
result += ticks;
}
*tp = result * MS_TO_NS;
if (*tp / MS_TO_NS != result) {
if (raise) {
_PyTime_overflow();
return -1;
}
/* Hello, time traveler! */
assert(0);
}
if (info) {
DWORD timeAdjustment, timeIncrement;
BOOL isTimeAdjustmentDisabled, ok;
if (has_gettickcount64)
info->implementation = "GetTickCount64()";
else
info->implementation = "GetTickCount()";
info->monotonic = 1;
ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
&isTimeAdjustmentDisabled);
if (!ok) {
PyErr_SetFromWindowsErr(0);
return -1;
}
info->resolution = timeIncrement * 1e-7;
info->adjustable = 0;
}
#elif defined(__APPLE__)
static mach_timebase_info_data_t timebase;
uint64_t time;
if (timebase.denom == 0) {
/* According to the Technical Q&A QA1398, mach_timebase_info() cannot
fail: https://developer.apple.com/library/mac/#qa/qa1398/ */
(void)mach_timebase_info(&timebase);
}
time = mach_absolute_time();
/* apply timebase factor */
time *= timebase.numer;
time /= timebase.denom;
*tp = time;
if (info) {
info->implementation = "mach_absolute_time()";
info->resolution = (double)timebase.numer / timebase.denom * 1e-9;
info->monotonic = 1;
info->adjustable = 0;
}
#else
struct timespec ts;
#ifdef CLOCK_HIGHRES
const clockid_t clk_id = CLOCK_HIGHRES;
const char *implementation = "clock_gettime(CLOCK_HIGHRES)";
#else
const clockid_t clk_id = CLOCK_MONOTONIC;
const char *implementation = "clock_gettime(CLOCK_MONOTONIC)";
#endif
assert(info == NULL || raise);
if (clock_gettime(clk_id, &ts) != 0) {
if (raise) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
return -1;
}
if (info) {
struct timespec res;
info->monotonic = 1;
info->implementation = implementation;
info->adjustable = 0;
if (clock_getres(clk_id, &res) != 0) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
}
if (_PyTime_FromTimespec(tp, &ts) < 0)
return -1;
#endif
#ifdef Py_DEBUG
/* monotonic clock cannot go backward */
assert(!last_set || last <= *tp);
last = *tp;
last_set = 1;
#endif
return 0;
}
_PyTime_t
_PyTime_GetMonotonicClock(void)
{
_PyTime_t t;
if (pymonotonic_new(&t, NULL, 0) < 0) {
/* cannot happen, _PyTime_Init() checks that pymonotonic_new() works */
assert(0);
t = 0;
}
return t;
}
int int
_PyTime_Init(void) _PyTime_Init(void)
{ {
_PyTime_timeval tv; _PyTime_timeval tv;
_PyTime_t t;
#ifdef MS_WINDOWS
winver.dwOSVersionInfoSize = sizeof(winver);
if (!GetVersionEx((OSVERSIONINFO*)&winver)) {
PyErr_SetFromWindowsErr(0);
return -1;
}
#endif
/* ensure that the system clock works */ /* ensure that the system clock works */
if (_PyTime_gettimeofday_info(&tv, NULL) < 0) if (_PyTime_gettimeofday_info(&tv, NULL) < 0)
@ -402,5 +707,9 @@ _PyTime_Init(void)
/* ensure that the operating system provides a monotonic clock */ /* ensure that the operating system provides a monotonic clock */
if (_PyTime_monotonic_info(&tv, NULL) < 0) if (_PyTime_monotonic_info(&tv, NULL) < 0)
return -1; return -1;
/* ensure that the operating system provides a monotonic clock */
if (pymonotonic_new(&t, NULL, 1) < 0)
return -1;
return 0; return 0;
} }