Additional explanatory comments for _Py_dg_strtod.

This commit is contained in:
Mark Dickinson 2010-01-20 21:23:25 +00:00
parent 1942806013
commit ca6ea56718
1 changed files with 73 additions and 0 deletions

View File

@ -1672,6 +1672,16 @@ _Py_dg_strtod(const char *s00, char **se)
}
}
else if (e1 < 0) {
/* The input decimal value lies in [10**e1, 10**(e1+16)).
If e1 <= -512, underflow immediately.
If e1 <= -256, set bc.scale to 2*P.
So for input value < 1e-256, bc.scale is always set;
for input value >= 1e-240, bc.scale is never set.
For input values in [1e-256, 1e-240), bc.scale may or may
not be set. */
e1 = -e1;
if ((i = e1 & 15))
dval(&rv) /= tens[i];
@ -1742,7 +1752,34 @@ _Py_dg_strtod(const char *s00, char **se)
if (bd0 == NULL)
goto failed_malloc;
/* Notation for the comments below. Write:
- dv for the absolute value of the number represented by the original
decimal input string.
- if we've truncated dv, write tdv for the truncated value.
Otherwise, set tdv == dv.
- srv for the quantity rv/2^bc.scale; so srv is the current binary
approximation to tdv (and dv). It should be exactly representable
in an IEEE 754 double.
*/
for(;;) {
/* This is the main correction loop for _Py_dg_strtod.
We've got a decimal value tdv, and a floating-point approximation
srv=rv/2^bc.scale to tdv. The aim is to determine whether srv is
close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
approximation if not.
To determine whether srv is close enough to tdv, compute integers
bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
respectively, and then use integer arithmetic to determine whether
|tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
*/
bd = Balloc(bd0->k);
if (bd == NULL) {
Bfree(bd0);
@ -1755,6 +1792,7 @@ _Py_dg_strtod(const char *s00, char **se)
Bfree(bd0);
goto failed_malloc;
}
/* tdv = bd * 10^e; srv = bb * 2^(bbe - scale) */
bs = i2b(1);
if (bs == NULL) {
Bfree(bb);
@ -1775,6 +1813,17 @@ _Py_dg_strtod(const char *s00, char **se)
bb2 += bbe;
else
bd2 -= bbe;
/* At this stage e = bd2 - bb2 + bbe = bd5 - bb5, so:
tdv = bd * 2^(bbe + bd2 - bb2) * 5^(bd5 - bb5)
srv = bb * 2^(bbe - scale).
Compute j such that
0.5 ulp(srv) = 2^(bbe - scale - j)
*/
bs2 = bb2;
j = bbe - bc.scale;
i = j + bbbits - 1; /* logb(rv) */
@ -1782,9 +1831,26 @@ _Py_dg_strtod(const char *s00, char **se)
j += P - Emin;
else
j = P + 1 - bbbits;
/* Now we have:
M * tdv = bd * 2^(bd2 + scale + j) * 5^bd5
M * srv = bb * 2^(bb2 + j) * 5^bb5
M * 0.5 ulp(srv) = 2^bs2 * 5^bb5
where M is the constant (currently) represented by 2^(j + scale +
bb2 - bbe) * 5^bb5.
*/
bb2 += j;
bd2 += j;
bd2 += bc.scale;
/* After the adjustments above, tdv, srv and 0.5 ulp(srv) are
proportional to: bd * 2^bd2 * 5^bd5, bb * 2^bb2 * 5^bb5, and
bs * 2^bs2 * 5^bb5, respectively. */
/* Remove excess powers of 2. i = min(bb2, bd2, bs2). */
i = bb2 < bd2 ? bb2 : bd2;
if (i > bs2)
i = bs2;
@ -1793,6 +1859,8 @@ _Py_dg_strtod(const char *s00, char **se)
bd2 -= i;
bs2 -= i;
}
/* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
if (bb5 > 0) {
bs = pow5mult(bs, bb5);
if (bs == NULL) {
@ -1847,6 +1915,11 @@ _Py_dg_strtod(const char *s00, char **se)
goto failed_malloc;
}
}
/* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
respectively. Compute the difference |tdv - srv|, and compare
with 0.5 ulp(srv). */
delta = diff(bb, bd);
if (delta == NULL) {
Bfree(bb);