bpo-31031: Unify duplicate bits_in_digit and bit_length (GH-2866)
Add _Py_bit_length() to unify duplicate bits_in_digit() and bit_length().
This commit is contained in:
parent
4691a2f2a2
commit
c5b79003f5
|
@ -227,4 +227,12 @@ PyAPI_FUNC(void) _Py_set_387controlword(unsigned short);
|
|||
* behavior. */
|
||||
#define _Py_InIntegralTypeRange(type, v) (_Py_IntegralTypeMin(type) <= v && v <= _Py_IntegralTypeMax(type))
|
||||
|
||||
/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
|
||||
* Equivalent to floor(log2(x))+1. Also equivalent to: bitwidth_of_type -
|
||||
* count_leading_zero_bits(x)
|
||||
*/
|
||||
#ifndef Py_LIMITED_API
|
||||
PyAPI_FUNC(unsigned int) _Py_bit_length(unsigned long d);
|
||||
#endif
|
||||
|
||||
#endif /* Py_PYMATH_H */
|
||||
|
|
|
@ -1441,28 +1441,6 @@ math_fsum(PyObject *module, PyObject *seq)
|
|||
#undef NUM_PARTIALS
|
||||
|
||||
|
||||
/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
|
||||
* Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
|
||||
* count_leading_zero_bits(x)
|
||||
*/
|
||||
|
||||
/* XXX: This routine does more or less the same thing as
|
||||
* bits_in_digit() in Objects/longobject.c. Someday it would be nice to
|
||||
* consolidate them. On BSD, there's a library function called fls()
|
||||
* that we could use, and GCC provides __builtin_clz().
|
||||
*/
|
||||
|
||||
static unsigned long
|
||||
bit_length(unsigned long n)
|
||||
{
|
||||
unsigned long len = 0;
|
||||
while (n != 0) {
|
||||
++len;
|
||||
n >>= 1;
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
static unsigned long
|
||||
count_set_bits(unsigned long n)
|
||||
{
|
||||
|
@ -1877,7 +1855,7 @@ factorial_partial_product(unsigned long start, unsigned long stop,
|
|||
/* find midpoint of range(start, stop), rounded up to next odd number. */
|
||||
midpoint = (start + num_operands) | 1;
|
||||
left = factorial_partial_product(start, midpoint,
|
||||
bit_length(midpoint - 2));
|
||||
_Py_bit_length(midpoint - 2));
|
||||
if (left == NULL)
|
||||
goto error;
|
||||
right = factorial_partial_product(midpoint, stop, max_bits);
|
||||
|
@ -1907,7 +1885,7 @@ factorial_odd_part(unsigned long n)
|
|||
Py_INCREF(outer);
|
||||
|
||||
upper = 3;
|
||||
for (i = bit_length(n) - 2; i >= 0; i--) {
|
||||
for (i = _Py_bit_length(n) - 2; i >= 0; i--) {
|
||||
v = n >> i;
|
||||
if (v <= 2)
|
||||
continue;
|
||||
|
@ -1917,7 +1895,7 @@ factorial_odd_part(unsigned long n)
|
|||
/* Here inner is the product of all odd integers j in the range (0,
|
||||
n/2**(i+1)]. The factorial_partial_product call below gives the
|
||||
product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
|
||||
partial = factorial_partial_product(lower, upper, bit_length(upper-2));
|
||||
partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2));
|
||||
/* inner *= partial */
|
||||
if (partial == NULL)
|
||||
goto error;
|
||||
|
|
|
@ -803,26 +803,6 @@ _PyLong_Sign(PyObject *vv)
|
|||
return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
|
||||
}
|
||||
|
||||
/* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
|
||||
2**k if d is nonzero, else 0. */
|
||||
|
||||
static const unsigned char BitLengthTable[32] = {
|
||||
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
|
||||
};
|
||||
|
||||
static int
|
||||
bits_in_digit(digit d)
|
||||
{
|
||||
int d_bits = 0;
|
||||
while (d >= 32) {
|
||||
d_bits += 6;
|
||||
d >>= 6;
|
||||
}
|
||||
d_bits += (int)BitLengthTable[d];
|
||||
return d_bits;
|
||||
}
|
||||
|
||||
size_t
|
||||
_PyLong_NumBits(PyObject *vv)
|
||||
{
|
||||
|
@ -840,7 +820,7 @@ _PyLong_NumBits(PyObject *vv)
|
|||
if ((size_t)(ndigits - 1) > SIZE_MAX / (size_t)PyLong_SHIFT)
|
||||
goto Overflow;
|
||||
result = (size_t)(ndigits - 1) * (size_t)PyLong_SHIFT;
|
||||
msd_bits = bits_in_digit(msd);
|
||||
msd_bits = _Py_bit_length(msd);
|
||||
if (SIZE_MAX - msd_bits < result)
|
||||
goto Overflow;
|
||||
result += msd_bits;
|
||||
|
@ -1950,7 +1930,7 @@ long_format_binary(PyObject *aa, int base, int alternate,
|
|||
return -1;
|
||||
}
|
||||
size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
|
||||
bits_in_digit(a->ob_digit[size_a - 1]);
|
||||
_Py_bit_length(a->ob_digit[size_a - 1]);
|
||||
/* Allow 1 character for a '-' sign. */
|
||||
sz = negative + (size_a_in_bits + (bits - 1)) / bits;
|
||||
}
|
||||
|
@ -2770,7 +2750,7 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
|
|||
|
||||
/* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
|
||||
shift v1 left by the same amount. Results go into w and v. */
|
||||
d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]);
|
||||
d = PyLong_SHIFT - _Py_bit_length(w1->ob_digit[size_w-1]);
|
||||
carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
|
||||
assert(carry == 0);
|
||||
carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
|
||||
|
@ -2891,7 +2871,7 @@ _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
|
|||
*e = 0;
|
||||
return 0.0;
|
||||
}
|
||||
a_bits = bits_in_digit(a->ob_digit[a_size-1]);
|
||||
a_bits = _Py_bit_length(a->ob_digit[a_size-1]);
|
||||
/* The following is an overflow-free version of the check
|
||||
"if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
|
||||
if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
|
||||
|
@ -3986,8 +3966,8 @@ long_true_divide(PyObject *v, PyObject *w)
|
|||
/* Extreme underflow */
|
||||
goto underflow_or_zero;
|
||||
/* Next line is now safe from overflowing a Py_ssize_t */
|
||||
diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
|
||||
bits_in_digit(b->ob_digit[b_size - 1]);
|
||||
diff = diff * PyLong_SHIFT + _Py_bit_length(a->ob_digit[a_size - 1]) -
|
||||
_Py_bit_length(b->ob_digit[b_size - 1]);
|
||||
/* Now diff = a_bits - b_bits. */
|
||||
if (diff > DBL_MAX_EXP)
|
||||
goto overflow;
|
||||
|
@ -4063,7 +4043,7 @@ long_true_divide(PyObject *v, PyObject *w)
|
|||
}
|
||||
x_size = Py_ABS(Py_SIZE(x));
|
||||
assert(x_size > 0); /* result of division is never zero */
|
||||
x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
|
||||
x_bits = (x_size-1)*PyLong_SHIFT+_Py_bit_length(x->ob_digit[x_size-1]);
|
||||
|
||||
/* The number of extra bits that have to be rounded away. */
|
||||
extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
|
||||
|
@ -4877,7 +4857,7 @@ _PyLong_GCD(PyObject *aarg, PyObject *barg)
|
|||
alloc_b = Py_SIZE(b);
|
||||
/* reduce until a fits into 2 digits */
|
||||
while ((size_a = Py_SIZE(a)) > 2) {
|
||||
nbits = bits_in_digit(a->ob_digit[size_a-1]);
|
||||
nbits = _Py_bit_length(a->ob_digit[size_a-1]);
|
||||
/* extract top 2*PyLong_SHIFT bits of a into x, along with
|
||||
corresponding bits of b into y */
|
||||
size_b = Py_SIZE(b);
|
||||
|
@ -5395,7 +5375,7 @@ int_bit_length_impl(PyObject *self)
|
|||
return PyLong_FromLong(0);
|
||||
|
||||
msd = ((PyLongObject *)self)->ob_digit[ndigits-1];
|
||||
msd_bits = bits_in_digit(msd);
|
||||
msd_bits = _Py_bit_length(msd);
|
||||
|
||||
if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
|
||||
return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
|
||||
|
|
|
@ -79,3 +79,18 @@ round(double x)
|
|||
return copysign(y, x);
|
||||
}
|
||||
#endif /* HAVE_ROUND */
|
||||
|
||||
static const unsigned int BitLengthTable[32] = {
|
||||
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
|
||||
};
|
||||
|
||||
unsigned int _Py_bit_length(unsigned long d) {
|
||||
unsigned int d_bits = 0;
|
||||
while (d >= 32) {
|
||||
d_bits += 6;
|
||||
d >>= 6;
|
||||
}
|
||||
d_bits += BitLengthTable[d];
|
||||
return d_bits;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue