Another crack at bug #1460340: make random.sample(dict)
work, this time by ugly brute force.
This commit is contained in:
parent
2a9a6b0e86
commit
c17976e983
|
@ -285,6 +285,15 @@ class Random(_random.Random):
|
|||
large population: sample(xrange(10000000), 60)
|
||||
"""
|
||||
|
||||
# XXX Although the documentation says `population` is "a sequence",
|
||||
# XXX attempts are made to cater to any iterable with a __len__
|
||||
# XXX method. This has had mixed success. Examples from both
|
||||
# XXX sides: sets work fine, and should become officially supported;
|
||||
# XXX dicts are much harder, and have failed in various subtle
|
||||
# XXX ways across attempts. Support for mapping types should probably
|
||||
# XXX be dropped (and users should pass mapping.keys() or .values()
|
||||
# XXX explicitly).
|
||||
|
||||
# Sampling without replacement entails tracking either potential
|
||||
# selections (the pool) in a list or previous selections in a set.
|
||||
|
||||
|
@ -304,7 +313,9 @@ class Random(_random.Random):
|
|||
setsize = 21 # size of a small set minus size of an empty list
|
||||
if k > 5:
|
||||
setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
|
||||
if n <= setsize: # is an n-length list smaller than a k-length set
|
||||
if n <= setsize or hasattr(population, "keys"):
|
||||
# An n-length list is smaller than a k-length set, or this is a
|
||||
# mapping type so the other algorithm wouldn't work.
|
||||
pool = list(population)
|
||||
for i in xrange(k): # invariant: non-selected at [0,n-i)
|
||||
j = _int(random() * (n-i))
|
||||
|
@ -320,10 +331,10 @@ class Random(_random.Random):
|
|||
j = _int(random() * n)
|
||||
selected_add(j)
|
||||
result[i] = population[j]
|
||||
except (TypeError, KeyError): # handle sets and dictionaries
|
||||
except (TypeError, KeyError): # handle (at least) sets
|
||||
if isinstance(population, list):
|
||||
raise
|
||||
return self.sample(list(population), k)
|
||||
return self.sample(tuple(population), k)
|
||||
return result
|
||||
|
||||
## -------------------- real-valued distributions -------------------
|
||||
|
|
|
@ -93,13 +93,29 @@ class TestBasicOps(unittest.TestCase):
|
|||
self.gen.sample(set(range(20)), 2)
|
||||
self.gen.sample(range(20), 2)
|
||||
self.gen.sample(xrange(20), 2)
|
||||
self.gen.sample(dict.fromkeys('abcdefghijklmnopqrst'), 2)
|
||||
self.gen.sample(str('abcdefghijklmnopqrst'), 2)
|
||||
self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
|
||||
|
||||
def test_sample_on_dicts(self):
|
||||
self.gen.sample(dict.fromkeys('abcdefghijklmnopqrst'), 2)
|
||||
|
||||
# SF bug #1460340 -- random.sample can raise KeyError
|
||||
a = dict.fromkeys(range(10)+range(10,100,2)+range(100,110))
|
||||
self.gen.sample(a, 3)
|
||||
|
||||
# A followup to bug #1460340: sampling from a dict could return
|
||||
# a subset of its keys or of its values, depending on the size of
|
||||
# the subset requested.
|
||||
N = 30
|
||||
d = dict((i, complex(i, i)) for i in xrange(N))
|
||||
for k in xrange(N+1):
|
||||
samp = self.gen.sample(d, k)
|
||||
# Verify that we got ints back (keys); the values are complex.
|
||||
for x in samp:
|
||||
self.assert_(type(x) is int)
|
||||
samp.sort()
|
||||
self.assertEqual(samp, range(N))
|
||||
|
||||
def test_gauss(self):
|
||||
# Ensure that the seed() method initializes all the hidden state. In
|
||||
# particular, through 2.2.1 it failed to reset a piece of state used
|
||||
|
|
|
@ -489,6 +489,11 @@ Extension Modules
|
|||
Library
|
||||
-------
|
||||
|
||||
- Bug #1460340: ``random.sample(dict)`` failed in various ways. Dicts
|
||||
aren't officially supported here, and trying to use them will probably
|
||||
raise an exception some day. But dicts have been allowed, and "mostly
|
||||
worked", so support for them won't go away without warning.
|
||||
|
||||
- Bug #1445068: getpass.getpass() can now be given an explicit stream
|
||||
argument to specify where to write the prompt.
|
||||
|
||||
|
|
Loading…
Reference in New Issue