bpo-31773: _PyTime_GetPerfCounter() uses _PyTime_t (GH-3983)

* Rewrite win_perf_counter() to only use integers internally.
* Add _PyTime_MulDiv() which compute "ticks * mul / div"
  in two parts (int part and remaining) to prevent integer overflow.
* Clock frequency is checked at initialization for integer overflow.
* Enhance also pymonotonic() to reduce the precision loss on macOS
  (mach_absolute_time() clock).
This commit is contained in:
Victor Stinner 2017-10-16 08:44:31 -07:00 committed by GitHub
parent 0df19055c9
commit bdaeb7d237
4 changed files with 137 additions and 50 deletions

View File

@ -197,7 +197,7 @@ PyAPI_FUNC(int) _PyTime_gmtime(time_t t, struct tm *tm);
The function cannot fail. _PyTime_Init() ensures that the system clock
works. */
PyAPI_FUNC(double) _PyTime_GetPerfCounterDouble(void);
PyAPI_FUNC(_PyTime_t) _PyTime_GetPerfCounter(void);
/* Get the performance counter: clock with the highest available resolution to
measure a short duration.
@ -205,8 +205,8 @@ PyAPI_FUNC(double) _PyTime_GetPerfCounterDouble(void);
Fill info (if set) with information of the function used to get the time.
Return 0 on success, raise an exception and return -1 on error. */
PyAPI_FUNC(int) _PyTime_GetPerfCounterDoubleWithInfo(
double *t,
PyAPI_FUNC(int) _PyTime_GetPerfCounterWithInfo(
_PyTime_t *t,
_Py_clock_info_t *info);
#ifdef __cplusplus

View File

@ -91,11 +91,12 @@ floatclock(_Py_clock_info_t *info)
static PyObject*
perf_counter(_Py_clock_info_t *info)
{
double t;
if (_PyTime_GetPerfCounterDoubleWithInfo(&t, info) < 0) {
_PyTime_t t;
if (_PyTime_GetPerfCounterWithInfo(&t, info) < 0) {
return NULL;
}
return PyFloat_FromDouble(t);
double d = _PyTime_AsSecondsDouble(t);
return PyFloat_FromDouble(d);
}
#if defined(MS_WINDOWS) || defined(HAVE_CLOCK)

View File

@ -1669,10 +1669,10 @@ PyImport_ImportModuleLevelObject(PyObject *name, PyObject *globals,
else {
static int ximporttime = 0;
static int import_level;
static double accumulated;
static _PyTime_t accumulated;
_Py_IDENTIFIER(importtime);
double t1 = 0, accumulated_copy = accumulated;
_PyTime_t t1 = 0, accumulated_copy = accumulated;
Py_XDECREF(mod);
@ -1695,7 +1695,7 @@ PyImport_ImportModuleLevelObject(PyObject *name, PyObject *globals,
if (ximporttime) {
import_level++;
t1 = _PyTime_GetPerfCounterDouble();
t1 = _PyTime_GetPerfCounter();
accumulated = 0;
}
@ -1711,12 +1711,12 @@ PyImport_ImportModuleLevelObject(PyObject *name, PyObject *globals,
mod != NULL);
if (ximporttime) {
double cum = _PyTime_GetPerfCounterDouble() - t1;
_PyTime_t cum = _PyTime_GetPerfCounter() - t1;
import_level--;
fprintf(stderr, "import time: %9ld | %10ld | %*s%s\n",
(long)ceil((cum - accumulated) * 1e6),
(long)ceil(cum * 1e6),
(long)_PyTime_AsMicroseconds(cum - accumulated, _PyTime_ROUND_CEILING),
(long)_PyTime_AsMicroseconds(cum, _PyTime_ROUND_CEILING),
import_level*2, "", PyUnicode_AsUTF8(abs_name));
accumulated = accumulated_copy + cum;

View File

@ -42,6 +42,27 @@ _PyTime_overflow(void)
"timestamp too large to convert to C _PyTime_t");
}
#if defined(MS_WINDOWS) || defined(__APPLE__)
Py_LOCAL_INLINE(_PyTime_t)
_PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div)
{
_PyTime_t intpart, remaining;
/* Compute (ticks * mul / div) in two parts to prevent integer overflow:
compute integer part, and then the remaining part.
(ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div
The caller must ensure that "(div - 1) * mul" cannot overflow. */
intpart = ticks / div;
ticks %= div;
remaining = ticks * mul;
remaining /= div;
return intpart * mul + remaining;
}
#endif /* defined(MS_WINDOWS) || defined(__APPLE__) */
time_t
_PyLong_AsTime_t(PyObject *obj)
{
@ -700,29 +721,62 @@ pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
#elif defined(__APPLE__)
static mach_timebase_info_data_t timebase;
uint64_t time;
static uint64_t t0 = 0;
uint64_t ticks;
if (timebase.denom == 0) {
/* According to the Technical Q&A QA1398, mach_timebase_info() cannot
fail: https://developer.apple.com/library/mac/#qa/qa1398/ */
(void)mach_timebase_info(&timebase);
/* Sanity check: should never occur in practice */
if (timebase.numer < 1 || timebase.denom < 1) {
PyErr_SetString(PyExc_RuntimeError,
"invalid mach_timebase_info");
return -1;
}
time = mach_absolute_time();
/* Check that timebase.numer and timebase.denom can be casted to
_PyTime_t. In pratice, timebase uses uint32_t, so casting cannot
overflow. At the end, only make sure that the type is uint32_t
(_PyTime_t is 64-bit long). */
assert(sizeof(timebase.numer) < sizeof(_PyTime_t));
assert(sizeof(timebase.denom) < sizeof(_PyTime_t));
/* apply timebase factor */
time *= timebase.numer;
time /= timebase.denom;
/* Make sure that (ticks * timebase.numer) cannot overflow in
_PyTime_MulDiv(), with ticks < timebase.denom.
*tp = time;
Known time bases:
* always (1, 1) on Intel
* (1000000000, 33333335) or (1000000000, 25000000) on PowerPC
None of these time bases can overflow with 64-bit _PyTime_t, but
check for overflow, just in case. */
if ((_PyTime_t)timebase.numer > _PyTime_MAX / (_PyTime_t)timebase.denom) {
PyErr_SetString(PyExc_OverflowError,
"mach_timebase_info is too large");
return -1;
}
t0 = mach_absolute_time();
}
if (info) {
info->implementation = "mach_absolute_time()";
info->resolution = (double)timebase.numer / timebase.denom * 1e-9;
info->resolution = (double)timebase.numer / (double)timebase.denom * 1e-9;
info->monotonic = 1;
info->adjustable = 0;
}
ticks = mach_absolute_time();
/* Use a "time zero" to reduce precision loss when converting time
to floatting point number, as in time.monotonic(). */
ticks -= t0;
*tp = _PyTime_MulDiv(ticks,
(_PyTime_t)timebase.numer,
(_PyTime_t)timebase.denom);
#elif defined(__hpux)
hrtime_t time;
@ -802,60 +856,93 @@ _PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
#ifdef MS_WINDOWS
static int
win_perf_counter(double *tp, _Py_clock_info_t *info)
win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info)
{
static LONGLONG cpu_frequency = 0;
static LONGLONG ctrStart;
static LONGLONG frequency = 0;
static LONGLONG t0 = 0;
LARGE_INTEGER now;
double diff;
LONGLONG ticksll;
_PyTime_t ticks;
if (cpu_frequency == 0) {
if (frequency == 0) {
LARGE_INTEGER freq;
QueryPerformanceCounter(&now);
ctrStart = now.QuadPart;
if (!QueryPerformanceFrequency(&freq) || freq.QuadPart == 0) {
if (!QueryPerformanceFrequency(&freq)) {
PyErr_SetFromWindowsErr(0);
return -1;
}
cpu_frequency = freq.QuadPart;
frequency = freq.QuadPart;
/* Sanity check: should never occur in practice */
if (frequency < 1) {
PyErr_SetString(PyExc_RuntimeError,
"invalid QueryPerformanceFrequency");
return -1;
}
/* Check that frequency can be casted to _PyTime_t.
Make also sure that (ticks * SEC_TO_NS) cannot overflow in
_PyTime_MulDiv(), with ticks < frequency.
Known QueryPerformanceFrequency() values:
* 10,000,000 (10 MHz): 100 ns resolution
* 3,579,545 Hz (3.6 MHz): 279 ns resolution
None of these frequencies can overflow with 64-bit _PyTime_t, but
check for overflow, just in case. */
if (frequency > _PyTime_MAX
|| frequency > (LONGLONG)_PyTime_MAX / (LONGLONG)SEC_TO_NS) {
PyErr_SetString(PyExc_OverflowError,
"QueryPerformanceFrequency is too large");
return -1;
}
QueryPerformanceCounter(&now);
diff = (double)(now.QuadPart - ctrStart);
t0 = now.QuadPart;
}
if (info) {
info->implementation = "QueryPerformanceCounter()";
info->resolution = 1.0 / (double)cpu_frequency;
info->resolution = 1.0 / (double)frequency;
info->monotonic = 1;
info->adjustable = 0;
}
diff = diff / (double)cpu_frequency;
*tp = diff;
QueryPerformanceCounter(&now);
ticksll = now.QuadPart;
/* Use a "time zero" to reduce precision loss when converting time
to floatting point number, as in time.perf_counter(). */
ticksll -= t0;
/* Make sure that casting LONGLONG to _PyTime_t cannot overflow,
both types are signed */
Py_BUILD_ASSERT(sizeof(ticksll) <= sizeof(ticks));
ticks = (_PyTime_t)ticksll;
*tp = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency);
return 0;
}
#endif
int
_PyTime_GetPerfCounterDoubleWithInfo(double *d, _Py_clock_info_t *info)
_PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
{
#ifdef MS_WINDOWS
return win_perf_counter(d, info);
return win_perf_counter(t, info);
#else
_PyTime_t t;
if (_PyTime_GetMonotonicClockWithInfo(&t, info) < 0) {
return -1;
}
*d = _PyTime_AsSecondsDouble(t);
return 0;
return _PyTime_GetMonotonicClockWithInfo(t, info);
#endif
}
double
_PyTime_GetPerfCounterDouble(void)
_PyTime_t
_PyTime_GetPerfCounter(void)
{
double t;
if (_PyTime_GetPerfCounterDoubleWithInfo(&t, NULL)) {
_PyTime_t t;
if (_PyTime_GetPerfCounterWithInfo(&t, NULL)) {
Py_UNREACHABLE();
}
return t;
@ -869,14 +956,13 @@ _PyTime_Init(void)
are working properly to not have to check for exceptions at runtime. If
a clock works once, it cannot fail in next calls. */
_PyTime_t t;
double d;
if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0) {
return -1;
}
if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0) {
return -1;
}
if (_PyTime_GetPerfCounterDoubleWithInfo(&d, NULL) < 0) {
if (_PyTime_GetPerfCounterWithInfo(&t, NULL) < 0) {
return -1;
}
return 0;