Just another checkin for backup. Nothing substantial yet.

This commit is contained in:
Guido van Rossum 1997-05-22 20:11:52 +00:00
parent af5be958e3
commit ae110af13b
2 changed files with 1612 additions and 20 deletions

View File

@ -1,9 +1,5 @@
\documentstyle[twoside,11pt,myformat]{report}
% NOTE: this file controls which chapters/sections of the library
% manual are actually printed. It is easy to customize your manual
% by commenting out sections that you're not interested in.
\title{Python-C API Reference}
\input{boilerplate}
@ -44,6 +40,9 @@ API functions in detail.
\chapter{Introduction}
(XXX This is the old introduction, mostly by Jim Fulton -- should be
rewritten.)
From the viewpoint of of C access to Python services, we have:
\begin{enumerate}
@ -67,18 +66,18 @@ strings, and lists. This interface exists and is currently documented
by the collection of include files provides with the Python
distributions.
\begin{enumerate}
\end{enumerate}
From the point of view of Python accessing services provided by C
modules:
\end{enumerate}
\begin{enumerate}
\item[4] "Python module interface": this interface consist of the basic
\item[4.] "Python module interface": this interface consist of the basic
routines used to define modules and their members. Most of the
current extensions-writing guide deals with this interface.
\item[5] "Built-in object interface": this is the interface that a new
\item[5.] "Built-in object interface": this is the interface that a new
built-in type must provide and the mechanisms and rules that a
developer of a new built-in type must use and follow.
@ -193,6 +192,8 @@ Empty the module table. For internal use only.
Initialize the \code{__builtin__} module. For internal use only.
\end{cfuncdesc}
XXX Other init functions: PyEval_InitThreads, PyOS_InitInterrupts,
PyMarshal_Init, PySys_Init.
\chapter{Reference Counting}
@ -235,15 +236,177 @@ effect is the same as for \code{Py_DECREF()}, and the same warning
applies.
\end{cfuncdesc}
The following functions are only for internal use:
\code{_Py_Dealloc}, \code{_Py_ForgetReference}, \code{_Py_NewReference},
as well as the global variable \code{_Py_RefTotal}.
\chapter{Exception Handling}
The functions in this chapter will let you handle and raise Python
exceptions.
exceptions. It is important to understand some of the basics of
Python exception handling. It works somewhat like the Unix
\code{errno} variable: there is a global indicator (per thread) of the
last error that occurred. Most functions don't clear this on success,
but will set it to indicate the cause of the error on failure. Most
functions also return an error indicator, usually \NULL{} if they are
supposed to return a pointer, or -1 if they return an integer
(exception: the \code{PyArg_Parse*()} functions return 1 for success and
0 for failure). When a function must fail because of some function it
called failed, it generally doesn't set the error indicator; the
function it called already set it.
The error indicator consists of three Python objects corresponding to
the Python variables \code{sys.exc_type}, \code{sys.exc_value} and
\code{sys.exc_traceback}. API functions exist to interact with the
error indicator in various ways. There is a separate error indicator
for each thread.
% XXX Order of these should be more thoughtful.
% Either alphabetical or some kind of structure.
\begin{cfuncdesc}{void}{PyErr_Print}{}
Print a standard traceback to \code{sys.stderr} and clear the error
indicator. Call this function only when the error indicator is set.
(Otherwise it will cause a fatal error!)
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyErr_Occurred}{}
Test whether the error indicator is set. If set, return the exception
\code{type} (the first argument to the last call to one of the
\code{PyErr_Set*()} functions or to \code{PyErr_Restore()}). If not
set, return \NULL{}. You do not own a reference to the return value,
so you do not need to \code{Py_DECREF()} it.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Clear}{}
Clear the error indicator. If the error indicator is not set, there
is no effect.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Fetch}{PyObject **ptype, PyObject **pvalue, PyObject **ptraceback}
Retrieve the error indicator into three variables whose addresses are
passed. If the error indicator is not set, set all three variables to
\NULL{}. If it is set, it will be cleared and you own a reference to
each object retrieved. The value and traceback object may be \NULL{}
even when the type object is not. \strong{Note:} this function is
normally only used by code that needs to handle exceptions or by code
that needs to save and restore the error indicator temporarily.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Restore}{PyObject *type, PyObject *value, PyObject *traceback}
Set the error indicator from the three objects. If the error
indicator is already set, it is cleared first. If the objects are
\NULL{}, the error indicator is cleared. Do not pass a \NULL{} type
and non-\NULL{} value or traceback. The exception type should be a
string or class; if it is a class, the value should be an instance of
that class. Do not pass an invalid exception type or value.
(Violating these rules will cause subtle problems later.) This call
takes away a reference to each object, i.e. you must own a reference
to each object before the call and after the call you no longer own
these references. (If you don't understand this, don't use this
function. I warned you.) \strong{Note:} this function is normally
only used by code that needs to save and restore the error indicator
temporarily.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetString}{PyObject *type, char *message}
This is the most common way to set the error indicator. The first
argument specifies the exception type; it is normally one of the
standard exceptions, e.g. \code{PyExc_RuntimeError}. You need not
increment its reference count. The second argument is an error
message; it is converted to a string object.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetObject}{PyObject *type, PyObject *value}
This function is similar to \code{PyErr_SetString()} but lets you
specify an arbitrary Python object for the ``value'' of the exception.
You need not increment its reference count.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetNone}{PyObject *type}
This is a shorthand for \code{PyErr_SetString(\var{type}, Py_None}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_BadArgument}{}
This is a shorthand for \code{PyErr_SetString(PyExc_TypeError,
\var{message})}, where \var{message} indicates that a built-in operation
was invoked with an illegal argument. It is mostly for internal use.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyErr_NoMemory}{}
This is a shorthand for \code{PyErr_SetNone(PyExc_MemoryError)}; it
returns \NULL{} so an object allocation function can write
\code{return PyErr_NoMemory();} when it runs out of memory.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyErr_SetFromErrno}{PyObject *type}
This is a convenience function to raise an exception when a C library
function has returned an error and set the C variable \code{errno}.
It constructs a tuple object whose first item is the integer
\code{errno} value and whose second item is the corresponding error
message (gotten from \code{strerror()}), and then calls
\code{PyErr_SetObject(\var{type}, \var{object})}. On \UNIX{}, when
the \code{errno} value is \code{EINTR}, indicating an interrupted
system call, this calls \code{PyErr_CheckSignals()}, and if that set
the error indicator, leaves it set to that. The function always
returns \NULL{}, so a wrapper function around a system call can write
\code{return PyErr_NoMemory();} when the system call returns an error.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_BadInternalCall}{}
This is a shorthand for \code{PyErr_SetString(PyExc_TypeError,
\var{message})}, where \var{message} indicates that an internal
operation (e.g. a Python-C API function) was invoked with an illegal
argument. It is mostly for internal use.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_CheckSignals}{}
This function interacts with Python's signal handling. It checks
whether a signal has been sent to the processes and if so, invokes the
corresponding signal handler. If the \code{signal} module is
supported, this can invoke a signal handler written in Python. In all
cases, the default effect for \code{SIGINT} is to raise the
\code{KeyboadInterrupt} exception. If an exception is raised the
error indicator is set and the function returns 1; otherwise the
function returns 0. The error indicator may or may not be cleared if
it was previously set.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetInterrupt}{}
This function is obsolete (XXX or platform dependent?). It simulates
the effect of a \code{SIGINT} signal arriving -- the next time
\code{PyErr_CheckSignals()} is called, \code{KeyboadInterrupt} will be
raised.
\end{cfuncdesc}
\section{Standard Exceptions}
All standard Python exceptions are available as global variables whose
names are \code{PyExc_} followed by the Python exception name.
These have the type \code{PyObject *}; they are all string objects.
For completion, here are all the variables:
\code{PyExc_AccessError},
\code{PyExc_AssertionError},
\code{PyExc_AttributeError},
\code{PyExc_EOFError},
\code{PyExc_FloatingPointError},
\code{PyExc_IOError},
\code{PyExc_ImportError},
\code{PyExc_IndexError},
\code{PyExc_KeyError},
\code{PyExc_KeyboardInterrupt},
\code{PyExc_MemoryError},
\code{PyExc_NameError},
\code{PyExc_OverflowError},
\code{PyExc_RuntimeError},
\code{PyExc_SyntaxError},
\code{PyExc_SystemError},
\code{PyExc_SystemExit},
\code{PyExc_TypeError},
\code{PyExc_ValueError},
\code{PyExc_ZeroDivisionError}.
\chapter{Utilities}
@ -278,6 +441,36 @@ The functions in this chapter will let you execute Python source code
given in a file or a buffer, but they will not let you interact in a
more detailed way with the interpreter.
\begin{cfuncdesc}{int}{PyRun_AnyFile}{FILE *, char *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_SimpleString}{char *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_SimpleFile}{FILE *, char *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_InteractiveOne}{FILE *, char *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_InteractiveLoop}{FILE *, char *}
\end{cfuncdesc}
\begin{cfuncdesc}{struct _node *}{PyParser_SimpleParseString}{char *, int}
\end{cfuncdesc}
\begin{cfuncdesc}{struct _node *}{PyParser_SimpleParseFile}{FILE *, char *, int}
\end{cfuncdesc}
\begin{cfuncdesc}{}{PyObject *PyRun}{ROTO((char *, int, PyObject *, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{}{PyObject *PyRun}{ROTO((FILE *, char *, int, PyObject *, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{}{PyObject *Py}{ROTO((char *, char *, int}
\end{cfuncdesc}
\chapter{Abstract Objects Layer}
@ -876,9 +1069,612 @@ e.g. to check that an object is a dictionary, use
\begin{cfuncdesc}{PyObject *}{_PyObject_New}{PyTypeObject *type}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{_PyObject_New}{PyTypeObject *type}
\begin{cfuncdesc}{PyObject *}{_PyObject_NewVar}{PyTypeObject *type, int size}
\end{cfuncdesc}
\begin{cfuncdesc}{TYPE}{_PyObject_NEW}{TYPE, PyTypeObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{TYPE}{_PyObject_NEW_VAR}{TYPE, PyTypeObject *, int size}
\end{cfuncdesc}
XXX To be done:
PyObject, PyVarObject
PyObject_HEAD, PyObject_HEAD_INIT, PyObject_VAR_HEAD
Typedefs:
unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc,
intintargfunc, intobjargproc, intintobjargproc, objobjargproc,
getreadbufferproc, getwritebufferproc, getsegcountproc,
destructor, printfunc, getattrfunc, getattrofunc, setattrfunc,
setattrofunc, cmpfunc, reprfunc, hashfunc
PyNumberMethods
PySequenceMethods
PyMappingMethods
PyBufferProcs
PyTypeObject
DL_IMPORT
PyType_Type
Py*_Check
Py_None, _Py_NoneStruct
_PyObject_New, _PyObject_NewVar
PyObject_NEW, PyObject_NEW_VAR
\chapter{Specific Data Types}
This chapter describes the functions that deal with specific types of
Python objects. It is structured like the ``family tree'' of Python
object types.
\section{Fundamental Objects}
This section describes Python type objects and the singleton object
\code{None}.
\subsection{Type Objects}
\begin{ctypedesc}{PyTypeObject}
\end{ctypedesc}
\begin{cvardesc}{PyObject *}{PyType_Type}
\end{cvardesc}
\subsection{The None Object}
\begin{cvardesc}{PyObject *}{Py_None}
macro
\end{cvardesc}
\section{Sequence Objects}
Generic operations on sequence objects were discussed in the previous
chapter; this section deals with the specific kinds of sequence
objects that are intrinsuc to the Python language.
\subsection{String Objects}
\begin{ctypedesc}{PyStringObject}
This subtype of \code{PyObject} represents a Python string object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyString_Type}
This instance of \code{PyTypeObject} represents the Python string type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyString_FromStringAndSize}{const char *, int}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyString_FromString}{const char *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_Size}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{char *}{PyString_AsString}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **, int}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyString_Format}{PyObject *, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyString_InternFromString}{const char *}
\end{cfuncdesc}
\begin{cfuncdesc}{char *}{PyString_AS_STRING}{PyStringObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_GET_SIZE}{PyStringObject *}
\end{cfuncdesc}
\subsection{Tuple Objects}
\begin{ctypedesc}{PyTupleObject}
This subtype of \code{PyObject} represents a Python tuple object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyTuple_Type}
This instance of \code{PyTypeObject} represents the Python tuple type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p}
Return true if the argument is a tuple object.
\end{cfuncdesc}
\begin{cfuncdesc}{PyTupleObject *}{PyTuple_New}{int s}
Return a new tuple object of size \code{s}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_Size}{PyTupleObject *p}
akes a pointer to a tuple object, and returns the size
of that tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyTuple_GetItem}{PyTupleObject *p, int pos}
returns the object at position \code{pos} in the tuple pointed
to by \code{p}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyTuple_GET_ITEM}{PyTupleObject *p, int pos}
does the same, but does no checking of it's
arguments.
\end{cfuncdesc}
\begin{cfuncdesc}{PyTupleObject *}{PyTuple_GetSlice}{PyTupleObject *p,
int low,
int high}
takes a slice of the tuple pointed to by \code{p} from
\code{low} to \code{high} and returns it as a new tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyTupleObject *p,
int pos,
PyObject *o}
inserts a reference to object \code{o} at position \code{pos} of
the tuple pointed to by \code{p}. It returns 0 on success.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyTupleObject *p,
int pos,
PyObject *o}
does the same, but does no error checking, and
should \emph{only} be used to fill in brand new tuples.
\end{cfuncdesc}
\begin{cfuncdesc}{PyTupleObject *}{_PyTuple_Resize}{PyTupleObject *p,
int new,
int last_is_sticky}
can be used to resize a tuple. Because tuples are
\emph{supposed} to be immutable, this should only be used if there is only
one module referencing the object. Do \emph{not} use this if the tuple may
already be known to some other part of the code. \code{last_is_sticky} is
a flag - if set, the tuple will grow or shrink at the front, otherwise
it will grow or shrink at the end. Think of this as destroying the old
tuple and creating a new one, only more efficiently.
\end{cfuncdesc}
\subsection{List Objects}
\begin{ctypedesc}{PyListObject}
This subtype of \code{PyObject} represents a Python list object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyList_Type}
This instance of \code{PyTypeObject} represents the Python list type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p}
returns true if it's argument is a \code{PyListObject}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyList_New}{int size}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Size}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyList_GetItem}{PyObject *, int}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *, int, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *, int, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Append}{PyObject *, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyList_GetSlice}{PyObject *, int, int}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *, int, int, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyList_AsTuple}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyList_GET_ITEM}{PyObject *list, int i}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_GET_SIZE}{PyObject *list}
\end{cfuncdesc}
\section{Mapping Objects}
\subsection{Dictionary Objects}
\begin{ctypedesc}{PyDictObject}
This subtype of \code{PyObject} represents a Python dictionary object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyDict_Type}
This instance of \code{PyTypeObject} represents the Python dictionary type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p}
returns true if it's argument is a PyDictObject
\end{cfuncdesc}
\begin{cfuncdesc}{PyDictObject *}{PyDict_New}{}
returns a new empty dictionary.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyDict_Clear}{PyDictObject *p}
empties an existing dictionary and deletes it.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_SetItem}{PyDictObject *p,
PyObject *key,
PyObject *val}
inserts \code{value} into the dictionary with a key of
\code{key}. Both \code{key} and \code{value} should be PyObjects, and \code{key} should
be hashable.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyDictObject *p,
char *key,
PyObject *val}
inserts \code{value} into the dictionary using \code{key}
as a key. \code{key} should be a char *
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_DelItem}{PyDictObject *p, PyObject *key}
removes the entry in dictionary \code{p} with key \code{key}.
\code{key} is a PyObject.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyDictObject *p, char *key}
removes the entry in dictionary \code{p} which has a key
specified by the \code{char *}\code{key}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyDict_GetItem}{PyDictObject *p, PyObject *key}
returns the object from dictionary \code{p} which has a key
\code{key}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyDict_GetItemString}{PyDictObject *p, char *key}
does the same, but \code{key} is specified as a
\code{char *}, rather than a \code{PyObject *}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyListObject *}{PyDict_Items}{PyDictObject *p}
returns a PyListObject containing all the items
from the dictionary, as in the mapping method \code{items()} (see the Reference
Guide)
\end{cfuncdesc}
\begin{cfuncdesc}{PyListObject *}{PyDict_Keys}{PyDictObject *p}
returns a PyListObject containing all the keys
from the dictionary, as in the mapping method \code{keys()} (see the Reference Guide)
\end{cfuncdesc}
\begin{cfuncdesc}{PyListObject *}{PyDict_Values}{PyDictObject *p}
returns a PyListObject containing all the values
from the dictionary, as in the mapping method \code{values()} (see the Reference Guide)
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Size}{PyDictObject *p}
returns the number of items in the dictionary.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Next}{PyDictObject *p,
int ppos,
PyObject **pkey,
PyObject **pvalue}
\end{cfuncdesc}
\section{Numeric Objects}
\subsection{Plain Integer Objects}
\begin{ctypedesc}{PyIntObject}
This subtype of \code{PyObject} represents a Python integer object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyInt_Type}
This instance of \code{PyTypeObject} represents the Python plain
integer type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyInt_Check}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyIntObject *}{PyInt_FromLong}{long ival}
creates a new integer object with a value of \code{ival}.
The current implementation keeps an array of integer objects for all
integers between -1 and 100, when you create an int in that range you
actually just get back a reference to the existing object. So it should
be possible to change the value of 1. I suspect the behaviour of python
in this case is undefined. :-)
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyIntObject *io}
returns the value of the object \code{io}.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io}
will first attempt to cast the object to a PyIntObject, if
it is not already one, and the return it's value.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_GetMax}{}
returns the systems idea of the largest int it can handle
(LONG_MAX, as defined in the system header files)
\end{cfuncdesc}
\subsection{Long Integer Objects}
\begin{ctypedesc}{PyLongObject}
This subtype of \code{PyObject} represents a Python long integer object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyLong_Type}
This instance of \code{PyTypeObject} represents the Python long integer type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p}
returns true if it's argument is a \code{PyLongObject}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyLong_FromLong}{long}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyLong_FromUnsignedLong}{unsigned long}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyLong_FromDouble}{double}
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject }
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{*PyLong_FromString}{char *, char **, int}
\end{cfuncdesc}
\subsection{Floating Point Objects}
\begin{ctypedesc}{PyFloatObject}
This subtype of \code{PyObject} represents a Python floating point object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFloat_Type}
This instance of \code{PyTypeObject} represents the Python floating
point type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p}
returns true if it's argument is a \code{PyFloatObject}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyFloat_FromDouble}{double}
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyFloatObject *}
\end{cfuncdesc}
\subsection{Complex Number Objects}
\begin{ctypedesc}{Py_complex}
typedef struct {
double real;
double imag;
}
\end{ctypedesc}
\begin{ctypedesc}{PyComplexObject}
This subtype of \code{PyObject} represents a Python complex number object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyComplex_Type}
This instance of \code{PyTypeObject} represents the Python complex
number type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p}
returns true if it's argument is a \code{PyComplexObject}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex, Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex, Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex, Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex, Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex, Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyComplex_FromCComplex}{Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyComplex_FromDoubles}{double real, double imag}
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op}
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
\end{cfuncdesc}
\section{Other Objects}
\subsection{File Objects}
\begin{ctypedesc}{PyFileObject}
This subtype of \code{PyObject} represents a Python file object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFile_Type}
This instance of \code{PyTypeObject} represents the Python file type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p}
returns true if it's argument is a \code{PyFileObject}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyFile_FromString}{char *name, char *mode}
creates a new PyFileObject pointing to the file
specified in \code{name} with the mode specified in \code{mode}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyFile_FromFile}{FILE *fp,
char *name, char *mode, int (*close})
creates a new PyFileObject from the already-open \code{fp}.
The function \code{close} will be called when the file should be closed.
\end{cfuncdesc}
\begin{cfuncdesc}{FILE *}{PyFile_AsFile}{PyFileObject *p}
returns the file object associated with \code{p} as a \code{FILE *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyStringObject *}{PyFile_GetLine}{PyObject *p, int n}
undocumented as yet
\end{cfuncdesc}
\begin{cfuncdesc}{PyStringObject *}{PyFile_Name}{PyObject *p}
returns the name of the file specified by \code{p} as a
PyStringObject
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n}
on systems with \code{setvbuf} only
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyFileObject *p, int newflag}
same as the file object method \code{softspace}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyFileObject *p}
writes object \code{obj} to file object \code{p}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_WriteString}{char *s, PyFileObject *p}
writes string \code{s} to file object \code{p}
\end{cfuncdesc}
\input{api.ind} % Index -- must be last
\end{document}

View File

@ -1,9 +1,5 @@
\documentstyle[twoside,11pt,myformat]{report}
% NOTE: this file controls which chapters/sections of the library
% manual are actually printed. It is easy to customize your manual
% by commenting out sections that you're not interested in.
\title{Python-C API Reference}
\input{boilerplate}
@ -44,6 +40,9 @@ API functions in detail.
\chapter{Introduction}
(XXX This is the old introduction, mostly by Jim Fulton -- should be
rewritten.)
From the viewpoint of of C access to Python services, we have:
\begin{enumerate}
@ -67,18 +66,18 @@ strings, and lists. This interface exists and is currently documented
by the collection of include files provides with the Python
distributions.
\begin{enumerate}
\end{enumerate}
From the point of view of Python accessing services provided by C
modules:
\end{enumerate}
\begin{enumerate}
\item[4] "Python module interface": this interface consist of the basic
\item[4.] "Python module interface": this interface consist of the basic
routines used to define modules and their members. Most of the
current extensions-writing guide deals with this interface.
\item[5] "Built-in object interface": this is the interface that a new
\item[5.] "Built-in object interface": this is the interface that a new
built-in type must provide and the mechanisms and rules that a
developer of a new built-in type must use and follow.
@ -193,6 +192,8 @@ Empty the module table. For internal use only.
Initialize the \code{__builtin__} module. For internal use only.
\end{cfuncdesc}
XXX Other init functions: PyEval_InitThreads, PyOS_InitInterrupts,
PyMarshal_Init, PySys_Init.
\chapter{Reference Counting}
@ -235,15 +236,177 @@ effect is the same as for \code{Py_DECREF()}, and the same warning
applies.
\end{cfuncdesc}
The following functions are only for internal use:
\code{_Py_Dealloc}, \code{_Py_ForgetReference}, \code{_Py_NewReference},
as well as the global variable \code{_Py_RefTotal}.
\chapter{Exception Handling}
The functions in this chapter will let you handle and raise Python
exceptions.
exceptions. It is important to understand some of the basics of
Python exception handling. It works somewhat like the Unix
\code{errno} variable: there is a global indicator (per thread) of the
last error that occurred. Most functions don't clear this on success,
but will set it to indicate the cause of the error on failure. Most
functions also return an error indicator, usually \NULL{} if they are
supposed to return a pointer, or -1 if they return an integer
(exception: the \code{PyArg_Parse*()} functions return 1 for success and
0 for failure). When a function must fail because of some function it
called failed, it generally doesn't set the error indicator; the
function it called already set it.
The error indicator consists of three Python objects corresponding to
the Python variables \code{sys.exc_type}, \code{sys.exc_value} and
\code{sys.exc_traceback}. API functions exist to interact with the
error indicator in various ways. There is a separate error indicator
for each thread.
% XXX Order of these should be more thoughtful.
% Either alphabetical or some kind of structure.
\begin{cfuncdesc}{void}{PyErr_Print}{}
Print a standard traceback to \code{sys.stderr} and clear the error
indicator. Call this function only when the error indicator is set.
(Otherwise it will cause a fatal error!)
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyErr_Occurred}{}
Test whether the error indicator is set. If set, return the exception
\code{type} (the first argument to the last call to one of the
\code{PyErr_Set*()} functions or to \code{PyErr_Restore()}). If not
set, return \NULL{}. You do not own a reference to the return value,
so you do not need to \code{Py_DECREF()} it.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Clear}{}
Clear the error indicator. If the error indicator is not set, there
is no effect.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Fetch}{PyObject **ptype, PyObject **pvalue, PyObject **ptraceback}
Retrieve the error indicator into three variables whose addresses are
passed. If the error indicator is not set, set all three variables to
\NULL{}. If it is set, it will be cleared and you own a reference to
each object retrieved. The value and traceback object may be \NULL{}
even when the type object is not. \strong{Note:} this function is
normally only used by code that needs to handle exceptions or by code
that needs to save and restore the error indicator temporarily.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_Restore}{PyObject *type, PyObject *value, PyObject *traceback}
Set the error indicator from the three objects. If the error
indicator is already set, it is cleared first. If the objects are
\NULL{}, the error indicator is cleared. Do not pass a \NULL{} type
and non-\NULL{} value or traceback. The exception type should be a
string or class; if it is a class, the value should be an instance of
that class. Do not pass an invalid exception type or value.
(Violating these rules will cause subtle problems later.) This call
takes away a reference to each object, i.e. you must own a reference
to each object before the call and after the call you no longer own
these references. (If you don't understand this, don't use this
function. I warned you.) \strong{Note:} this function is normally
only used by code that needs to save and restore the error indicator
temporarily.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetString}{PyObject *type, char *message}
This is the most common way to set the error indicator. The first
argument specifies the exception type; it is normally one of the
standard exceptions, e.g. \code{PyExc_RuntimeError}. You need not
increment its reference count. The second argument is an error
message; it is converted to a string object.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetObject}{PyObject *type, PyObject *value}
This function is similar to \code{PyErr_SetString()} but lets you
specify an arbitrary Python object for the ``value'' of the exception.
You need not increment its reference count.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetNone}{PyObject *type}
This is a shorthand for \code{PyErr_SetString(\var{type}, Py_None}.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_BadArgument}{}
This is a shorthand for \code{PyErr_SetString(PyExc_TypeError,
\var{message})}, where \var{message} indicates that a built-in operation
was invoked with an illegal argument. It is mostly for internal use.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyErr_NoMemory}{}
This is a shorthand for \code{PyErr_SetNone(PyExc_MemoryError)}; it
returns \NULL{} so an object allocation function can write
\code{return PyErr_NoMemory();} when it runs out of memory.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyErr_SetFromErrno}{PyObject *type}
This is a convenience function to raise an exception when a C library
function has returned an error and set the C variable \code{errno}.
It constructs a tuple object whose first item is the integer
\code{errno} value and whose second item is the corresponding error
message (gotten from \code{strerror()}), and then calls
\code{PyErr_SetObject(\var{type}, \var{object})}. On \UNIX{}, when
the \code{errno} value is \code{EINTR}, indicating an interrupted
system call, this calls \code{PyErr_CheckSignals()}, and if that set
the error indicator, leaves it set to that. The function always
returns \NULL{}, so a wrapper function around a system call can write
\code{return PyErr_NoMemory();} when the system call returns an error.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_BadInternalCall}{}
This is a shorthand for \code{PyErr_SetString(PyExc_TypeError,
\var{message})}, where \var{message} indicates that an internal
operation (e.g. a Python-C API function) was invoked with an illegal
argument. It is mostly for internal use.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyErr_CheckSignals}{}
This function interacts with Python's signal handling. It checks
whether a signal has been sent to the processes and if so, invokes the
corresponding signal handler. If the \code{signal} module is
supported, this can invoke a signal handler written in Python. In all
cases, the default effect for \code{SIGINT} is to raise the
\code{KeyboadInterrupt} exception. If an exception is raised the
error indicator is set and the function returns 1; otherwise the
function returns 0. The error indicator may or may not be cleared if
it was previously set.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyErr_SetInterrupt}{}
This function is obsolete (XXX or platform dependent?). It simulates
the effect of a \code{SIGINT} signal arriving -- the next time
\code{PyErr_CheckSignals()} is called, \code{KeyboadInterrupt} will be
raised.
\end{cfuncdesc}
\section{Standard Exceptions}
All standard Python exceptions are available as global variables whose
names are \code{PyExc_} followed by the Python exception name.
These have the type \code{PyObject *}; they are all string objects.
For completion, here are all the variables:
\code{PyExc_AccessError},
\code{PyExc_AssertionError},
\code{PyExc_AttributeError},
\code{PyExc_EOFError},
\code{PyExc_FloatingPointError},
\code{PyExc_IOError},
\code{PyExc_ImportError},
\code{PyExc_IndexError},
\code{PyExc_KeyError},
\code{PyExc_KeyboardInterrupt},
\code{PyExc_MemoryError},
\code{PyExc_NameError},
\code{PyExc_OverflowError},
\code{PyExc_RuntimeError},
\code{PyExc_SyntaxError},
\code{PyExc_SystemError},
\code{PyExc_SystemExit},
\code{PyExc_TypeError},
\code{PyExc_ValueError},
\code{PyExc_ZeroDivisionError}.
\chapter{Utilities}
@ -278,6 +441,36 @@ The functions in this chapter will let you execute Python source code
given in a file or a buffer, but they will not let you interact in a
more detailed way with the interpreter.
\begin{cfuncdesc}{int}{PyRun_AnyFile}{FILE *, char *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_SimpleString}{char *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_SimpleFile}{FILE *, char *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_InteractiveOne}{FILE *, char *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyRun_InteractiveLoop}{FILE *, char *}
\end{cfuncdesc}
\begin{cfuncdesc}{struct _node *}{PyParser_SimpleParseString}{char *, int}
\end{cfuncdesc}
\begin{cfuncdesc}{struct _node *}{PyParser_SimpleParseFile}{FILE *, char *, int}
\end{cfuncdesc}
\begin{cfuncdesc}{}{PyObject *PyRun}{ROTO((char *, int, PyObject *, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{}{PyObject *PyRun}{ROTO((FILE *, char *, int, PyObject *, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{}{PyObject *Py}{ROTO((char *, char *, int}
\end{cfuncdesc}
\chapter{Abstract Objects Layer}
@ -876,9 +1069,612 @@ e.g. to check that an object is a dictionary, use
\begin{cfuncdesc}{PyObject *}{_PyObject_New}{PyTypeObject *type}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{_PyObject_New}{PyTypeObject *type}
\begin{cfuncdesc}{PyObject *}{_PyObject_NewVar}{PyTypeObject *type, int size}
\end{cfuncdesc}
\begin{cfuncdesc}{TYPE}{_PyObject_NEW}{TYPE, PyTypeObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{TYPE}{_PyObject_NEW_VAR}{TYPE, PyTypeObject *, int size}
\end{cfuncdesc}
XXX To be done:
PyObject, PyVarObject
PyObject_HEAD, PyObject_HEAD_INIT, PyObject_VAR_HEAD
Typedefs:
unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc,
intintargfunc, intobjargproc, intintobjargproc, objobjargproc,
getreadbufferproc, getwritebufferproc, getsegcountproc,
destructor, printfunc, getattrfunc, getattrofunc, setattrfunc,
setattrofunc, cmpfunc, reprfunc, hashfunc
PyNumberMethods
PySequenceMethods
PyMappingMethods
PyBufferProcs
PyTypeObject
DL_IMPORT
PyType_Type
Py*_Check
Py_None, _Py_NoneStruct
_PyObject_New, _PyObject_NewVar
PyObject_NEW, PyObject_NEW_VAR
\chapter{Specific Data Types}
This chapter describes the functions that deal with specific types of
Python objects. It is structured like the ``family tree'' of Python
object types.
\section{Fundamental Objects}
This section describes Python type objects and the singleton object
\code{None}.
\subsection{Type Objects}
\begin{ctypedesc}{PyTypeObject}
\end{ctypedesc}
\begin{cvardesc}{PyObject *}{PyType_Type}
\end{cvardesc}
\subsection{The None Object}
\begin{cvardesc}{PyObject *}{Py_None}
macro
\end{cvardesc}
\section{Sequence Objects}
Generic operations on sequence objects were discussed in the previous
chapter; this section deals with the specific kinds of sequence
objects that are intrinsuc to the Python language.
\subsection{String Objects}
\begin{ctypedesc}{PyStringObject}
This subtype of \code{PyObject} represents a Python string object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyString_Type}
This instance of \code{PyTypeObject} represents the Python string type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyString_FromStringAndSize}{const char *, int}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyString_FromString}{const char *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_Size}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{char *}{PyString_AsString}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **, int}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyString_Format}{PyObject *, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyString_InternFromString}{const char *}
\end{cfuncdesc}
\begin{cfuncdesc}{char *}{PyString_AS_STRING}{PyStringObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyString_GET_SIZE}{PyStringObject *}
\end{cfuncdesc}
\subsection{Tuple Objects}
\begin{ctypedesc}{PyTupleObject}
This subtype of \code{PyObject} represents a Python tuple object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyTuple_Type}
This instance of \code{PyTypeObject} represents the Python tuple type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p}
Return true if the argument is a tuple object.
\end{cfuncdesc}
\begin{cfuncdesc}{PyTupleObject *}{PyTuple_New}{int s}
Return a new tuple object of size \code{s}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_Size}{PyTupleObject *p}
akes a pointer to a tuple object, and returns the size
of that tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyTuple_GetItem}{PyTupleObject *p, int pos}
returns the object at position \code{pos} in the tuple pointed
to by \code{p}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyTuple_GET_ITEM}{PyTupleObject *p, int pos}
does the same, but does no checking of it's
arguments.
\end{cfuncdesc}
\begin{cfuncdesc}{PyTupleObject *}{PyTuple_GetSlice}{PyTupleObject *p,
int low,
int high}
takes a slice of the tuple pointed to by \code{p} from
\code{low} to \code{high} and returns it as a new tuple.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyTupleObject *p,
int pos,
PyObject *o}
inserts a reference to object \code{o} at position \code{pos} of
the tuple pointed to by \code{p}. It returns 0 on success.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyTupleObject *p,
int pos,
PyObject *o}
does the same, but does no error checking, and
should \emph{only} be used to fill in brand new tuples.
\end{cfuncdesc}
\begin{cfuncdesc}{PyTupleObject *}{_PyTuple_Resize}{PyTupleObject *p,
int new,
int last_is_sticky}
can be used to resize a tuple. Because tuples are
\emph{supposed} to be immutable, this should only be used if there is only
one module referencing the object. Do \emph{not} use this if the tuple may
already be known to some other part of the code. \code{last_is_sticky} is
a flag - if set, the tuple will grow or shrink at the front, otherwise
it will grow or shrink at the end. Think of this as destroying the old
tuple and creating a new one, only more efficiently.
\end{cfuncdesc}
\subsection{List Objects}
\begin{ctypedesc}{PyListObject}
This subtype of \code{PyObject} represents a Python list object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyList_Type}
This instance of \code{PyTypeObject} represents the Python list type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p}
returns true if it's argument is a \code{PyListObject}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyList_New}{int size}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Size}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyList_GetItem}{PyObject *, int}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *, int, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *, int, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Append}{PyObject *, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyList_GetSlice}{PyObject *, int, int}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *, int, int, PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyList_AsTuple}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyList_GET_ITEM}{PyObject *list, int i}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyList_GET_SIZE}{PyObject *list}
\end{cfuncdesc}
\section{Mapping Objects}
\subsection{Dictionary Objects}
\begin{ctypedesc}{PyDictObject}
This subtype of \code{PyObject} represents a Python dictionary object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyDict_Type}
This instance of \code{PyTypeObject} represents the Python dictionary type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p}
returns true if it's argument is a PyDictObject
\end{cfuncdesc}
\begin{cfuncdesc}{PyDictObject *}{PyDict_New}{}
returns a new empty dictionary.
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyDict_Clear}{PyDictObject *p}
empties an existing dictionary and deletes it.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_SetItem}{PyDictObject *p,
PyObject *key,
PyObject *val}
inserts \code{value} into the dictionary with a key of
\code{key}. Both \code{key} and \code{value} should be PyObjects, and \code{key} should
be hashable.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyDictObject *p,
char *key,
PyObject *val}
inserts \code{value} into the dictionary using \code{key}
as a key. \code{key} should be a char *
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_DelItem}{PyDictObject *p, PyObject *key}
removes the entry in dictionary \code{p} with key \code{key}.
\code{key} is a PyObject.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyDictObject *p, char *key}
removes the entry in dictionary \code{p} which has a key
specified by the \code{char *}\code{key}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyDict_GetItem}{PyDictObject *p, PyObject *key}
returns the object from dictionary \code{p} which has a key
\code{key}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyDict_GetItemString}{PyDictObject *p, char *key}
does the same, but \code{key} is specified as a
\code{char *}, rather than a \code{PyObject *}.
\end{cfuncdesc}
\begin{cfuncdesc}{PyListObject *}{PyDict_Items}{PyDictObject *p}
returns a PyListObject containing all the items
from the dictionary, as in the mapping method \code{items()} (see the Reference
Guide)
\end{cfuncdesc}
\begin{cfuncdesc}{PyListObject *}{PyDict_Keys}{PyDictObject *p}
returns a PyListObject containing all the keys
from the dictionary, as in the mapping method \code{keys()} (see the Reference Guide)
\end{cfuncdesc}
\begin{cfuncdesc}{PyListObject *}{PyDict_Values}{PyDictObject *p}
returns a PyListObject containing all the values
from the dictionary, as in the mapping method \code{values()} (see the Reference Guide)
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Size}{PyDictObject *p}
returns the number of items in the dictionary.
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyDict_Next}{PyDictObject *p,
int ppos,
PyObject **pkey,
PyObject **pvalue}
\end{cfuncdesc}
\section{Numeric Objects}
\subsection{Plain Integer Objects}
\begin{ctypedesc}{PyIntObject}
This subtype of \code{PyObject} represents a Python integer object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyInt_Type}
This instance of \code{PyTypeObject} represents the Python plain
integer type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyInt_Check}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyIntObject *}{PyInt_FromLong}{long ival}
creates a new integer object with a value of \code{ival}.
The current implementation keeps an array of integer objects for all
integers between -1 and 100, when you create an int in that range you
actually just get back a reference to the existing object. So it should
be possible to change the value of 1. I suspect the behaviour of python
in this case is undefined. :-)
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyIntObject *io}
returns the value of the object \code{io}.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io}
will first attempt to cast the object to a PyIntObject, if
it is not already one, and the return it's value.
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyInt_GetMax}{}
returns the systems idea of the largest int it can handle
(LONG_MAX, as defined in the system header files)
\end{cfuncdesc}
\subsection{Long Integer Objects}
\begin{ctypedesc}{PyLongObject}
This subtype of \code{PyObject} represents a Python long integer object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyLong_Type}
This instance of \code{PyTypeObject} represents the Python long integer type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p}
returns true if it's argument is a \code{PyLongObject}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyLong_FromLong}{long}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyLong_FromUnsignedLong}{unsigned long}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyLong_FromDouble}{double}
\end{cfuncdesc}
\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject }
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{*PyLong_FromString}{char *, char **, int}
\end{cfuncdesc}
\subsection{Floating Point Objects}
\begin{ctypedesc}{PyFloatObject}
This subtype of \code{PyObject} represents a Python floating point object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFloat_Type}
This instance of \code{PyTypeObject} represents the Python floating
point type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p}
returns true if it's argument is a \code{PyFloatObject}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyFloat_FromDouble}{double}
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *}
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyFloatObject *}
\end{cfuncdesc}
\subsection{Complex Number Objects}
\begin{ctypedesc}{Py_complex}
typedef struct {
double real;
double imag;
}
\end{ctypedesc}
\begin{ctypedesc}{PyComplexObject}
This subtype of \code{PyObject} represents a Python complex number object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyComplex_Type}
This instance of \code{PyTypeObject} represents the Python complex
number type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p}
returns true if it's argument is a \code{PyComplexObject}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex, Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex, Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex, Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex, Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex, Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyComplex_FromCComplex}{Py_complex}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyComplex_FromDoubles}{double real, double imag}
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op}
\end{cfuncdesc}
\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op}
\end{cfuncdesc}
\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
\end{cfuncdesc}
\section{Other Objects}
\subsection{File Objects}
\begin{ctypedesc}{PyFileObject}
This subtype of \code{PyObject} represents a Python file object.
\end{ctypedesc}
\begin{cvardesc}{PyTypeObject}{PyFile_Type}
This instance of \code{PyTypeObject} represents the Python file type.
\end{cvardesc}
\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p}
returns true if it's argument is a \code{PyFileObject}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyFile_FromString}{char *name, char *mode}
creates a new PyFileObject pointing to the file
specified in \code{name} with the mode specified in \code{mode}
\end{cfuncdesc}
\begin{cfuncdesc}{PyObject *}{PyFile_FromFile}{FILE *fp,
char *name, char *mode, int (*close})
creates a new PyFileObject from the already-open \code{fp}.
The function \code{close} will be called when the file should be closed.
\end{cfuncdesc}
\begin{cfuncdesc}{FILE *}{PyFile_AsFile}{PyFileObject *p}
returns the file object associated with \code{p} as a \code{FILE *}
\end{cfuncdesc}
\begin{cfuncdesc}{PyStringObject *}{PyFile_GetLine}{PyObject *p, int n}
undocumented as yet
\end{cfuncdesc}
\begin{cfuncdesc}{PyStringObject *}{PyFile_Name}{PyObject *p}
returns the name of the file specified by \code{p} as a
PyStringObject
\end{cfuncdesc}
\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n}
on systems with \code{setvbuf} only
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyFileObject *p, int newflag}
same as the file object method \code{softspace}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyFileObject *p}
writes object \code{obj} to file object \code{p}
\end{cfuncdesc}
\begin{cfuncdesc}{int}{PyFile_WriteString}{char *s, PyFileObject *p}
writes string \code{s} to file object \code{p}
\end{cfuncdesc}
\input{api.ind} % Index -- must be last
\end{document}