Fix special-value handling for math.sum.
Also minor cleanups to the code: fix tabbing, remove trailing whitespace, and reformat to fit into 80 columns.
This commit is contained in:
parent
efdf706a9f
commit
abe0aee3cf
|
@ -414,6 +414,7 @@ math_sum(PyObject *self, PyObject *seq)
|
||||||
PyObject *item, *iter, *sum = NULL;
|
PyObject *item, *iter, *sum = NULL;
|
||||||
Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
|
Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
|
||||||
double x, y, t, ps[NUM_PARTIALS], *p = ps;
|
double x, y, t, ps[NUM_PARTIALS], *p = ps;
|
||||||
|
double xsave, special_sum = 0.0, inf_sum = 0.0;
|
||||||
volatile double hi, yr, lo;
|
volatile double hi, yr, lo;
|
||||||
|
|
||||||
iter = PyObject_GetIter(seq);
|
iter = PyObject_GetIter(seq);
|
||||||
|
@ -438,10 +439,11 @@ math_sum(PyObject *self, PyObject *seq)
|
||||||
if (PyErr_Occurred())
|
if (PyErr_Occurred())
|
||||||
goto _sum_error;
|
goto _sum_error;
|
||||||
|
|
||||||
|
xsave = x;
|
||||||
for (i = j = 0; j < n; j++) { /* for y in partials */
|
for (i = j = 0; j < n; j++) { /* for y in partials */
|
||||||
y = p[j];
|
y = p[j];
|
||||||
if (fabs(x) < fabs(y)) {
|
if (fabs(x) < fabs(y)) {
|
||||||
t = x; x = y; y = t;
|
t = x; x = y; y = t;
|
||||||
}
|
}
|
||||||
hi = x + y;
|
hi = x + y;
|
||||||
yr = hi - x;
|
yr = hi - x;
|
||||||
|
@ -453,51 +455,65 @@ math_sum(PyObject *self, PyObject *seq)
|
||||||
|
|
||||||
n = i; /* ps[i:] = [x] */
|
n = i; /* ps[i:] = [x] */
|
||||||
if (x != 0.0) {
|
if (x != 0.0) {
|
||||||
/* If non-finite, reset partials, effectively
|
if (! Py_IS_FINITE(x)) {
|
||||||
adding subsequent items without roundoff
|
/* a nonfinite x could arise either as
|
||||||
and yielding correct non-finite results,
|
a result of intermediate overflow, or
|
||||||
provided IEEE 754 rules are observed */
|
as a result of a nan or inf in the
|
||||||
if (! Py_IS_FINITE(x))
|
summands */
|
||||||
|
if (Py_IS_FINITE(xsave)) {
|
||||||
|
PyErr_SetString(PyExc_OverflowError,
|
||||||
|
"intermediate overflow in sum");
|
||||||
|
goto _sum_error;
|
||||||
|
}
|
||||||
|
if (Py_IS_INFINITY(xsave))
|
||||||
|
inf_sum += xsave;
|
||||||
|
special_sum += xsave;
|
||||||
|
/* reset partials */
|
||||||
n = 0;
|
n = 0;
|
||||||
|
}
|
||||||
else if (n >= m && _sum_realloc(&p, n, ps, &m))
|
else if (n >= m && _sum_realloc(&p, n, ps, &m))
|
||||||
goto _sum_error;
|
goto _sum_error;
|
||||||
p[n++] = x;
|
else
|
||||||
|
p[n++] = x;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (special_sum != 0.0) {
|
||||||
|
if (Py_IS_NAN(inf_sum))
|
||||||
|
PyErr_SetString(PyExc_ValueError,
|
||||||
|
"-inf + inf in sum");
|
||||||
|
else
|
||||||
|
sum = PyFloat_FromDouble(special_sum);
|
||||||
|
goto _sum_error;
|
||||||
|
}
|
||||||
|
|
||||||
hi = 0.0;
|
hi = 0.0;
|
||||||
if (n > 0) {
|
if (n > 0) {
|
||||||
hi = p[--n];
|
hi = p[--n];
|
||||||
if (Py_IS_FINITE(hi)) {
|
/* sum_exact(ps, hi) from the top, stop when the sum becomes
|
||||||
/* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */
|
inexact. */
|
||||||
while (n > 0) {
|
while (n > 0) {
|
||||||
x = hi;
|
x = hi;
|
||||||
y = p[--n];
|
y = p[--n];
|
||||||
assert(fabs(y) < fabs(x));
|
assert(fabs(y) < fabs(x));
|
||||||
hi = x + y;
|
hi = x + y;
|
||||||
yr = hi - x;
|
yr = hi - x;
|
||||||
lo = y - yr;
|
lo = y - yr;
|
||||||
if (lo != 0.0)
|
if (lo != 0.0)
|
||||||
break;
|
break;
|
||||||
}
|
|
||||||
/* Make half-even rounding work across multiple partials. Needed
|
|
||||||
so that sum([1e-16, 1, 1e16]) will round-up the last digit to
|
|
||||||
two instead of down to zero (the 1e-16 makes the 1 slightly
|
|
||||||
closer to two). With a potential 1 ULP rounding error fixed-up,
|
|
||||||
math.sum() can guarantee commutativity. */
|
|
||||||
if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
|
|
||||||
(lo > 0.0 && p[n-1] > 0.0))) {
|
|
||||||
y = lo * 2.0;
|
|
||||||
x = hi + y;
|
|
||||||
yr = x - hi;
|
|
||||||
if (y == yr)
|
|
||||||
hi = x;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
else { /* raise exception corresponding to a special value */
|
/* Make half-even rounding work across multiple partials.
|
||||||
errno = Py_IS_NAN(hi) ? EDOM : ERANGE;
|
Needed so that sum([1e-16, 1, 1e16]) will round-up the last
|
||||||
if (is_error(hi))
|
digit to two instead of down to zero (the 1e-16 makes the 1
|
||||||
goto _sum_error;
|
slightly closer to two). With a potential 1 ULP rounding
|
||||||
|
error fixed-up, math.sum() can guarantee commutativity. */
|
||||||
|
if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
|
||||||
|
(lo > 0.0 && p[n-1] > 0.0))) {
|
||||||
|
y = lo * 2.0;
|
||||||
|
x = hi + y;
|
||||||
|
yr = x - hi;
|
||||||
|
if (y == yr)
|
||||||
|
hi = x;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
sum = PyFloat_FromDouble(hi);
|
sum = PyFloat_FromDouble(hi);
|
||||||
|
|
Loading…
Reference in New Issue