Document rich comparisons.

This commit is contained in:
Guido van Rossum 2001-01-18 15:17:06 +00:00
parent 67345eb03f
commit ab782dd6cc
1 changed files with 42 additions and 5 deletions

View File

@ -133,9 +133,10 @@ Its truth value is false.
\item[NotImplemented]
This type has a single value. There is a single object with this value.
This object is accessed through the built-in name \code{NotImplemented}.
Binary number methods may return this value if they do not implement the
operation for the types of operands provided. The interpreter will then
try the reverse operation. Its truth value is true.
Numeric methods and rich comparison methods may return this value if
they do not implement the operation for the operands provided. (The
interpreter will then try the reflected operation, or some other
fallback, depending on the operator.) Its truth value is true.
\ttindex{NotImplemented}
\obindex{NotImplemented@{\texttt{NotImplemented}}}
@ -943,8 +944,44 @@ expression: a more convenient or concise representation may be used
instead. The return value must be a string object.
\end{methoddesc}
\begin{methoddesc}[object]{__lt__}{self, other}
\methodline[object]{__le__}{self, other}
\methodline[object]{__eq__}{self, other}
\methodline[object]{__ne__}{self, other}
\methodline[object]{__gt__}{self, other}
\methodline[object]{__ge__}{self, other}
\versionadded{2.1}
These are the so-called ``rich comparison'' methods, and are called
for comparison operators in preference to \method{__cmp__()} below.
The correspondence between operator symbols and method names is as
follows:
\code{\var{x}<\var{y}} calls \code{\var{x}.__lt__(\var{y})},
\code{\var{x}<=\var{y}} calls \code{\var{x}.__le__(\var{y})},
\code{\var{x}==\var{y}} calls \code{\var{x}.__eq__(\var{y})},
\code{\var{x}!=\var{y}} and \code{\var{x}<>\var{y}} call
\code{\var{x}.__ne__(\var{y})},
\code{\var{x}>\var{y}} calls \code{\var{x}.__gt__(\var{y})}, and
\code{\var{x}>=\var{y}} calls \code{\var{x}.__ge__(\var{y})}.
These methods can return any value, but if the comparison operator is
used in a Boolean context, the return value should be interpretable as
a Boolean value, else a \exception{TypeError} will be raised.
By convention, \code{0} is used for false and \code{1} for true.
There are no reflected (swapped-argument) versions of these methods
(to be used when the left argument does not support the operation but
the right argument does); rather, \method{__lt__()} and
\method{__gt__()} are each other's reflection, \method{__le__()} and
\method{__ge__()} are each other's reflection, and \method{__eq__()}
and \method{__ne__()} are their own reflection.
Arguments to rich comparison methods are never coerced. A rich
comparison method may return \code{NotImplemented} if it does not
implement the operation for a given pair of arguments.
\end{methoddesc}
\begin{methoddesc}[object]{__cmp__}{self, other}
Called by all comparison operations. Should return a negative integer if
Called by comparison operations if rich comparison (see above) is not
defined. Should return a negative integer if
\code{self < other}, zero if \code{self == other}, a positive integer if
\code{self > other}. If no \method{__cmp__()} operation is defined, class
instances are compared by object identity (``address'').
@ -1288,7 +1325,7 @@ called to implement the binary arithmetic operations (\code{+},
\code{-}, \code{*}, \code{/}, \code{\%},
\function{divmod()}\bifuncindex{divmod},
\function{pow()}\bifuncindex{pow}, \code{**}, \code{<<}, \code{>>},
\code{\&}, \code{\^}, \code{|}) with reversed operands. These
\code{\&}, \code{\^}, \code{|}) with reflected (swapped) operands. These
functions are only called if the left operand does not support the
corresponding operation. For instance, to evaluate the expression
\var{x}\code{-}\var{y}, where \var{y} is an instance of a class that