Add comments to the power functions, in particular to _mpd_qpow_real().
This commit is contained in:
parent
d69cfe88ea
commit
9c1feb88f3
|
@ -5984,8 +5984,10 @@ finish:
|
|||
mpd_qfinalize(result, ctx, status);
|
||||
}
|
||||
|
||||
/*
|
||||
* This is an internal function that does not check for NaNs.
|
||||
/*
|
||||
* If the exponent is infinite and base equals one, the result is one
|
||||
* with a coefficient of length prec. Otherwise, result is undefined.
|
||||
* Return the value of the comparison against one.
|
||||
*/
|
||||
static int
|
||||
_qcheck_pow_one_inf(mpd_t *result, const mpd_t *base, uint8_t resultsign,
|
||||
|
@ -6006,7 +6008,7 @@ _qcheck_pow_one_inf(mpd_t *result, const mpd_t *base, uint8_t resultsign,
|
|||
}
|
||||
|
||||
/*
|
||||
* If base equals one, calculate the correct power of one result.
|
||||
* If abs(base) equals one, calculate the correct power of one result.
|
||||
* Otherwise, result is undefined. Return the value of the comparison
|
||||
* against 1.
|
||||
*
|
||||
|
@ -6060,7 +6062,7 @@ _qcheck_pow_one(mpd_t *result, const mpd_t *base, const mpd_t *exp,
|
|||
|
||||
/*
|
||||
* Detect certain over/underflow of x**y.
|
||||
* ACL2 proof: pow_bounds.lisp.
|
||||
* ACL2 proof: pow-bounds.lisp.
|
||||
*
|
||||
* Symbols:
|
||||
*
|
||||
|
@ -6215,7 +6217,10 @@ _mpd_qpow_exact(mpd_t *result, const mpd_t *base, const mpd_t *exp,
|
|||
}
|
||||
*/
|
||||
|
||||
/* The power function for real exponents */
|
||||
/*
|
||||
* The power function for real exponents.
|
||||
* Relative error: abs(result - e**y) < e**y * 1/5 * 10**(-prec - 1)
|
||||
*/
|
||||
static void
|
||||
_mpd_qpow_real(mpd_t *result, const mpd_t *base, const mpd_t *exp,
|
||||
const mpd_context_t *ctx, uint32_t *status)
|
||||
|
@ -6234,6 +6239,30 @@ _mpd_qpow_real(mpd_t *result, const mpd_t *base, const mpd_t *exp,
|
|||
workctx.round = MPD_ROUND_HALF_EVEN;
|
||||
workctx.allcr = ctx->allcr;
|
||||
|
||||
/*
|
||||
* extra := MPD_EXPDIGITS = MPD_EXP_MAX_T
|
||||
* wp := prec + 4 + extra
|
||||
* abs(err) < 5 * 10**-wp
|
||||
* y := log(base) * exp
|
||||
* Calculate:
|
||||
* 1) e**(y * (1 + err)**2) * (1 + err)
|
||||
* = e**y * e**(y * (2*err + err**2)) * (1 + err)
|
||||
* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
* Relative error of the underlined term:
|
||||
* 2) abs(e**(y * (2*err + err**2)) - 1)
|
||||
* Case abs(y) >= 10**extra:
|
||||
* 3) adjexp(y)+1 > log10(abs(y)) >= extra
|
||||
* This triggers the Overflow/Underflow shortcut in _mpd_qexp(),
|
||||
* so no further analysis is necessary.
|
||||
* Case abs(y) < 10**extra:
|
||||
* 4) abs(y * (2*err + err**2)) < 1/5 * 10**(-prec - 2)
|
||||
* Use (see _mpd_qexp):
|
||||
* 5) abs(x) <= 9/10 * 10**-p ==> abs(e**x - 1) < 10**-p
|
||||
* With 2), 4) and 5):
|
||||
* 6) abs(e**(y * (2*err + err**2)) - 1) < 10**(-prec - 2)
|
||||
* The complete relative error of 1) is:
|
||||
* 7) abs(result - e**y) < e**y * 1/5 * 10**(-prec - 1)
|
||||
*/
|
||||
mpd_qln(result, base, &workctx, &workctx.status);
|
||||
mpd_qmul(result, result, &texp, &workctx, &workctx.status);
|
||||
mpd_qexp(result, result, &workctx, status);
|
||||
|
|
Loading…
Reference in New Issue