Tim's quicksort on May 25.
This commit is contained in:
parent
16653cb273
commit
9be628338d
|
@ -625,46 +625,11 @@ docompare(x, y, compare)
|
|||
}
|
||||
|
||||
/* MINSIZE is the smallest array we care to partition; smaller arrays
|
||||
are sorted using a straight insertion sort (above). It must be at
|
||||
least 3 for the quicksort implementation to work. Assuming that
|
||||
comparisons are more expensive than everything else (and this is a
|
||||
good assumption for Python), it should be 10, which is the cutoff
|
||||
point: quicksort requires more comparisons than insertion sort for
|
||||
smaller arrays. */
|
||||
#define MINSIZE 10
|
||||
|
||||
/* Straight insertion sort. More efficient for sorting small arrays. */
|
||||
|
||||
static int
|
||||
insertionsort(array, size, compare)
|
||||
PyObject **array; /* Start of array to sort */
|
||||
int size; /* Number of elements to sort */
|
||||
PyObject *compare;/* Comparison function object, or NULL => default */
|
||||
{
|
||||
register PyObject **a = array;
|
||||
register PyObject **end = array+size;
|
||||
register PyObject **p;
|
||||
|
||||
for (p = a+1; p < end; p++) {
|
||||
register PyObject *key = *p;
|
||||
register PyObject **q = p;
|
||||
while (--q >= a) {
|
||||
register int k = docompare(key, *q, compare);
|
||||
/* if (p-q >= MINSIZE)
|
||||
fprintf(stderr, "OUCH! %d\n", p-q); */
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0) {
|
||||
*(q+1) = *q;
|
||||
*q = key; /* For consistency */
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
are sorted using binary insertion. It must be at least 4 for the
|
||||
quicksort implementation to work. Binary insertion always requires
|
||||
fewer compares than quicksort, but does O(N**2) data movement. The
|
||||
more expensive compares, the larger MINSIZE should be. */
|
||||
#define MINSIZE 49
|
||||
|
||||
/* STACKSIZE is the size of our work stack. A rough estimate is that
|
||||
this allows us to sort arrays of MINSIZE * 2**STACKSIZE, or large
|
||||
|
@ -673,20 +638,20 @@ insertionsort(array, size, compare)
|
|||
exactly in two.) */
|
||||
#define STACKSIZE 64
|
||||
|
||||
/* Quicksort algorithm. Return -1 if an exception occurred; in this
|
||||
/* quicksort algorithm. Return -1 if an exception occurred; in this
|
||||
case we leave the array partly sorted but otherwise in good health
|
||||
(i.e. no items have been removed or duplicated). */
|
||||
|
||||
static int
|
||||
quicksort(array, size, compare)
|
||||
PyObject **array; /* Start of array to sort */
|
||||
int size; /* Number of elements to sort */
|
||||
PyObject **array; /* Start of array to sort */
|
||||
int size; /* Number of elements to sort */
|
||||
PyObject *compare;/* Comparison function object, or NULL for default */
|
||||
{
|
||||
register PyObject *tmp, *pivot;
|
||||
register PyObject **l, **r, **p;
|
||||
register PyObject **lo, **hi;
|
||||
int top, k, n;
|
||||
PyObject **lo, **hi, **notp;
|
||||
int top, k, n, lisp, risp;
|
||||
PyObject **lostack[STACKSIZE];
|
||||
PyObject **histack[STACKSIZE];
|
||||
|
||||
|
@ -699,55 +664,66 @@ quicksort(array, size, compare)
|
|||
while (--top >= 0) {
|
||||
lo = lostack[top];
|
||||
hi = histack[top];
|
||||
|
||||
/* If it's a small one, use straight insertion sort */
|
||||
n = hi - lo;
|
||||
if (n < MINSIZE)
|
||||
|
||||
/* If it's a small one, use binary insertion sort */
|
||||
if (n < MINSIZE) {
|
||||
for (notp = lo+1; notp < hi; ++notp) {
|
||||
/* set l to where *notp belongs */
|
||||
l = lo;
|
||||
r = notp;
|
||||
pivot = *r;
|
||||
do {
|
||||
p = l + ((r - l) >> 1);
|
||||
k = docompare(pivot, *p, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
r = p;
|
||||
else
|
||||
l = p + 1;
|
||||
} while (l < r);
|
||||
/* Pivot should go at l -- slide over to
|
||||
make room. Caution: using memmove
|
||||
is much slower under MSVC 5; we're
|
||||
not usually moving many slots. */
|
||||
for (p = notp; p > l; --p)
|
||||
*p = *(p-1);
|
||||
*l = pivot;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Choose median of first, middle and last as pivot;
|
||||
these 3 are reverse-sorted in the process; the ends
|
||||
will be swapped on the first do-loop iteration.
|
||||
*/
|
||||
l = lo; /* First */
|
||||
/* Choose median of first, middle and last as pivot */
|
||||
l = lo; /* First */
|
||||
p = lo + (n>>1); /* Middle */
|
||||
r = hi - 1; /* Last */
|
||||
r = hi - 1; /* Last */
|
||||
|
||||
k = docompare(*l, *p, compare);
|
||||
k = docompare(*p, *l, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
{ tmp = *l; *l = *p; *p = tmp; }
|
||||
{ tmp = *p; *p = *l; *l = tmp; }
|
||||
|
||||
k = docompare(*p, *r, compare);
|
||||
k = docompare(*r, *p, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
{ tmp = *p; *p = *r; *r = tmp; }
|
||||
{ tmp = *r; *r = *p; *p = tmp; }
|
||||
|
||||
k = docompare(*l, *p, compare);
|
||||
k = docompare(*p, *l, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
{ tmp = *l; *l = *p; *p = tmp; }
|
||||
{ tmp = *p; *p = *l; *l = tmp; }
|
||||
|
||||
pivot = *p;
|
||||
l++;
|
||||
r--;
|
||||
|
||||
/* Partition the array */
|
||||
do {
|
||||
tmp = *l; *l = *r; *r = tmp;
|
||||
if (l == p) {
|
||||
p = r;
|
||||
l++;
|
||||
}
|
||||
else if (r == p) {
|
||||
p = l;
|
||||
r--;
|
||||
}
|
||||
else {
|
||||
l++;
|
||||
r--;
|
||||
}
|
||||
for (;;) {
|
||||
lisp = risp = 1; /* presumed guilty */
|
||||
|
||||
/* Move left index to element >= pivot */
|
||||
while (l < p) {
|
||||
|
@ -756,8 +732,10 @@ quicksort(array, size, compare)
|
|||
return -1;
|
||||
if (k < 0)
|
||||
l++;
|
||||
else
|
||||
else {
|
||||
lisp = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
/* Move right index to element <= pivot */
|
||||
while (r > p) {
|
||||
|
@ -766,79 +744,119 @@ quicksort(array, size, compare)
|
|||
return -1;
|
||||
if (k < 0)
|
||||
r--;
|
||||
else
|
||||
else {
|
||||
risp = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} while (l < r);
|
||||
if (lisp == risp) {
|
||||
/* assert l < p < r or l == p == r
|
||||
* This is the most common case, so we
|
||||
* strive to get back to the top of the
|
||||
* loop ASAP.
|
||||
*/
|
||||
tmp = *l; *l = *r; *r = tmp;
|
||||
l++; r--;
|
||||
if (l < r)
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
|
||||
/* lo < l == p == r < hi-1
|
||||
*p == pivot
|
||||
/* One (exactly) of the pointers is at p */
|
||||
/* assert (p == l) ^ (p == r) */
|
||||
notp = lisp ? r : l;
|
||||
k = (r - l) >> 1;
|
||||
if (k) {
|
||||
*p = *notp;
|
||||
if (lisp) {
|
||||
p = r - k;
|
||||
l++;
|
||||
}
|
||||
else {
|
||||
p = l + k;
|
||||
r--;
|
||||
}
|
||||
/* assert l < p < r */
|
||||
*notp = *p;
|
||||
*p = pivot; /* for consistency */
|
||||
continue;
|
||||
}
|
||||
|
||||
/* assert l+1 == r */
|
||||
*p = *notp;
|
||||
*notp = pivot;
|
||||
p = notp;
|
||||
break;
|
||||
} /* end of partitioning loop */
|
||||
|
||||
/* assert *p == pivot
|
||||
All in [lo,p) are <= pivot
|
||||
At p == pivot
|
||||
All in [p+1,hi) are >= pivot
|
||||
|
||||
Now extend as far as possible (around p) so that:
|
||||
All in [lo,r) are <= pivot
|
||||
All in [r,l) are == pivot
|
||||
All in [l,hi) are >= pivot
|
||||
This wastes two compares if no elements are == to the
|
||||
pivot, but can win big when there are duplicates.
|
||||
Mildly tricky: continue using only "<" -- we deduce
|
||||
equality indirectly.
|
||||
*/
|
||||
while (r > lo) {
|
||||
/* because r-1 < p, *(r-1) <= pivot is known */
|
||||
k = docompare(*(r-1), pivot, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
break;
|
||||
/* <= and not < implies == */
|
||||
r--;
|
||||
}
|
||||
|
||||
l++;
|
||||
while (l < hi) {
|
||||
/* because l > p, pivot <= *l is known */
|
||||
k = docompare(pivot, *l, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
break;
|
||||
/* <= and not < implies == */
|
||||
r = p;
|
||||
l = p + 1;
|
||||
/* Partitions are [lo,r) and [l,hi).
|
||||
* See whether *l == pivot; we know *l >= pivot, so
|
||||
* they're equal iff *l <= pivot too, or not pivot < *l.
|
||||
* This wastes a compare if it fails, but can win big
|
||||
* when there are runs of duplicates.
|
||||
*/
|
||||
k = docompare(pivot, *l, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (!(k < 0)) {
|
||||
/* Now extend as far as possible (around p) so that:
|
||||
All in [lo,r) are <= pivot
|
||||
All in [r,l) are == pivot
|
||||
All in [l,hi) are >= pivot
|
||||
Mildly tricky: continue using only "<" -- we
|
||||
deduce equality indirectly.
|
||||
*/
|
||||
while (r > lo) {
|
||||
/* because r-1 < p, *(r-1) <= pivot is known */
|
||||
k = docompare(*(r-1), pivot, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
break;
|
||||
/* <= and not < implies == */
|
||||
r--;
|
||||
}
|
||||
|
||||
l++;
|
||||
}
|
||||
while (l < hi) {
|
||||
/* because l > p, pivot <= *l is known */
|
||||
k = docompare(pivot, *l, compare);
|
||||
if (k == CMPERROR)
|
||||
return -1;
|
||||
if (k < 0)
|
||||
break;
|
||||
/* <= and not < implies == */
|
||||
l++;
|
||||
}
|
||||
|
||||
} /* end of checking for duplicates */
|
||||
|
||||
/* Push biggest partition first */
|
||||
if (r - lo >= hi - l) {
|
||||
/* First one is bigger */
|
||||
lostack[top] = lo;
|
||||
lostack[top] = lo;
|
||||
histack[top++] = r;
|
||||
lostack[top] = l;
|
||||
lostack[top] = l;
|
||||
histack[top++] = hi;
|
||||
} else {
|
||||
/* Second one is bigger */
|
||||
lostack[top] = l;
|
||||
lostack[top] = l;
|
||||
histack[top++] = hi;
|
||||
lostack[top] = lo;
|
||||
lostack[top] = lo;
|
||||
histack[top++] = r;
|
||||
}
|
||||
/* Should assert top <= STACKSIZE */
|
||||
}
|
||||
|
||||
/*
|
||||
* Ouch - even if I screwed up the quicksort above, the
|
||||
* insertionsort below will cover up the problem - just a
|
||||
* performance hit would be noticable.
|
||||
*/
|
||||
|
||||
/* insertionsort is pretty fast on the partially sorted list */
|
||||
|
||||
if (insertionsort(array, size, compare) < 0)
|
||||
return -1;
|
||||
|
||||
/* Success */
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue